ol
Us

>
-

S HYTINNVHSHY
¥ TECHNOLOGY

Ay 1995
%*s \‘?«“c;a
v oF &

Ahsanullah University of Science and Technology
Department of Electrical and Electronic Engineering

LABORATORY MANUAL
FOR
ELECTRICAL AND ELECTRONIC SESSIONAL COURSES

Student Name :
Student ID :

Course No. : EEE 4232
Course Title : VLSI Il Lab.

For the students of
Department of Electrical and Electronic Engineering
4% Year, 2"4 Semester

EEE 4232 VLS| Il Laboratory

Table of Contents

Lab-0: Overview of VLSI-Il LabOratoryc..uee ettt eree et e e e e e e naee s 1
Lab-1: Introduction to Verilog HDL Programmingccceeiieieccciiiieeeeeeieseerneeeee e e e seevnvnseeseeeeenans 6
Lab-2: Introduction to Functional Verification Using Verilog Testbench.c.cccceeeeiinvenennee. 32
Lab-3: Modeling Sequential Systems and Finite State Machine Using Verilog HDL..................... 49
Lab-4: Introduction to UniX Shell. ...t 60
Lab-5: Synthesis using Genus Synthesis SOIULIONcuuviiiiiiiiie e 67
Lab-6: Physical Design Using Innovus Implementation System (Part 1)ccccccceevvviveeeiniiieneenee, 75
Lab-7A: Physical Design Using Innovus Implementation System (Part 2)ccccoevvveeeeiiieeeeennne. 97
Lab-7B: Static Timing Analysis Using Innovus Implementation Systemcccccceveeeeevecinvveeennn.. 109
Lab-8: Physical Verification and Exporting GDSII Using Innovus Implementation System 119

References and ACKNOWIEAEMENT ... e e e e e rrr e e e e 129

EEE 4232 VLS| Il Laboratory

Lab-0: Overview of VLSI-Il Laboratory
Objective
The main objectives of this lab are:

e Familiarization with Application Specific Integrated Circuits (ASIC) design flow.
e Overview of the VLSI-II lab.

Introduction

To design very large-scale integrated circuits some frontend and backend processes needed to
be acomplished. The processes can be represented as a flow chart to show the life cycle of a chip
which is called Application Specific Integrated Circuits (ASIC) design flow. A typical ASIC design
flow is shown below.

System Specification

v

‘ Architectural Design |

Design Import & Timing Mode Setup

Design Implementation K
¥ Floorplanning

Functional Verification *
Creating Power Mesh

0
U
0
0
g
g
g
.
¥
0
»
.
g
*

Logic Synthesis

o
o
0y
o
.
.
o

Physical Design
d ¥ S and Route

| Cell Placement and PreCTS optimization |

Automatic Place v
‘ Clock Tree Synthesis and PostCTS opt |

‘ Veritication & Signoff | Routing and Post Routing Optimization

Fabrication

Metal and Standard Cell Fill

Packaging & Testing *
¥ Physical Verification

Chip

Figure: ASIC design flow

Page 1 0of 129

EEE 4232 VLS| Il Laboratory

System Specification
Design functionality, performance factors (speed, power, latency, throughput, dimension,
data size), cost, I/O requirements etc are clearly stated at this stage.

Architectural Design

Determines required different architecture blocks to implement the design to maximize the
performance factors. It also determines the algorithm for optimized connection of the
blocks and formal verification is performed.

Design Implementation

The system can be designed in two ways: analog design and digital design. In the analog
design process, circuit blocks are designed at the transistor level. On the other hand, the
synthesizable RTL description of the device is programmed using Hardware Description
Language (HDL) in the digital design process. HDL Programming can be easily implemented
for any modern complex device as it gives the advantage of simulating and verifying the
design output and functionality efficiently.

Functional Verification and Testing

Functional simulation is performed in this stage, and the logic of the system is verified using
timing simulation and test vectors. If the functionality doesn’t match the Function should
be designed again

Logic Synthesis

The process of translating the RTL into a gate-level netlist is called Synthesis. In this process,
the design is optimized, and technology mapping or library binding is done. The gate-level
netlist must undergo formal verification to prove that RTL and netlist are equivalent.

Physical Design

Physical Design is the process of transforming a circuit description into a physical layout that
describes the position of cells and routes for the interconnections between them. The
physical design consists of the following steps.

= Design Import & Timing Mode Setup

* Floorplanning

= Creating Power Mesh

= Cell Placement and PreCTS optimization
= Clock Tree Synthesis and PostCTS opt

= Routing and Post-Routing Optimization
= Metal and Standard Cell Fill

Page 2 of 129

EEE 4232 VLS| Il Laboratory

Verification and Signoff

Verification would either be just before the tapeout stage of the chip or the stage where
design is again taken back through the same flow for optimization. The following
verifications are usually performed in this stage.

= Design Rule Check (DRC): It checks design rules such as shapes/size/spacing and
many other complex rules of each metal layer.

» Layout vs Schematic (LVS): It checks whether the design layout is equivalent to its
schematic.

= Antenna Rule Check (ARC): Checks for a large area of metals that might affect the
manufacturing process.

= Electrical Rule Check (ERC): The methodology used to check the robustness of a
design both at schematic and layout levels against various electronic design rules.

After all verifications, post-processing is applied where the physical layout data is translated
into an industry-standard format called GDSII. The GDSII file is sent to the semiconductor
foundry to convert it into mask data which is called tapeout. GDS Il is a database file format
that is the industry standard for data exchange of integrated circuit or IC layout artwork. It
is a binary file format representing planar geometric shapes, text labels, and other
information about the layout in hierarchical form. It is also referred as Graphic Design
System.

Fabrication
The mask of physical design is sent to factories called fabs(clean room). Several masks are
used in turn, each one reproducing a layer of the completed design Masks are used to create
a specific pattern of each material in a sequential manner and create a complex pattern of
several layers Introduction
For fabricating an IC in the clean room following steps are performed.

= Wafer Preparation

= QOxidation
= Lithography (Photoresist & Masking)
= Etching

= Dopant Incorporation (Diffusion & lon Implantation)
= Crystal Epitaxial Growth

= Deposition

= |solation

= (Cleaning

Packaging & Testing
After fabricating the chip in a clean room, it should pass some specific tests before
commercial use. If all test is confirmed it is packaged and sent to the consumer.

Chip

The final output of the process is a chip.

Page 3 of 129

EEE 4232 VLS| Il Laboratory

EDA Files
Liberty Timing File (.lib file)

ASCII representation of the timing and power parameters associated with any cell in particular
semiconductor technology. Types of lib file Fast lib, Slow lib, and Typical lib. Basic differences
among those libraries are Nominal voltage Nominal temperature cell leakage Power Capacitance,
Fall power, Rise power, and Timing.

Library Exchange Format (.lef file)

LEF is a specification file for representing the physical layout of an ICin an ASCIl format. It contains
library information for a class of designs. It mainly contains Layer information, Via information,
Placement site type and origin, and Macrocell definitions.

SDC (Standard Design Constraint)

The Standard Design Constraint format is used to specify the design intent, including the timing,
power and area constraints for a design.

Cap table

Cap table contains information of parasitic Resistance and Capacitance which is used to model
the interconnect of a design.

Cdb (Celtic Database)

For signal integrity analysis besides lib files, the tool required the .cdb files also. The main issues
of concern for signal integrity are Ringing, Crosstalk, Ground bounce, Distortion, Signal loss,
Power supply noise.

Commonly used EDA Tools

Function Tools
Analog Design Cadence Virtuoso, HSPice, LTSpice
Cell Layout Design Cadence Virtuoso Layout Suit
RTL Coding Cadence NCSim, ModelSim, Quartus
Synthesis Cadence Genus, Yosys Open Synthesis Suite
Physical System Design and STA Cadence Encounter, Innovus
Verification Cadence PVS, Mentor graphic Calibre

Page 4 of 129

Probable List of Lab Tasks

EEE 4232 VLS| Il Laboratory

The following processes of VLSI ASIC design flow will be covered in the upcoming classes.

Front End Process

= Verilog HDL programming language.

= Functional Verification using Verilog Testbench.

= Modeling Sequential Systems and FSM using Verilog.

= Synthesis

Backend Process

= Physical Design
= Static Timing Analysis

= Physical Verification and Power Analysis

Assessment Procedure and Marks Distribution (Tentative)

Assessment Type Percentage
i) Continuous Performance 10
ii) Lab Test-1 20
iii) Lab Test-2 25
iv) Assignment 15
v) Project 30
Total 100

Page 5 of 129

EEE 4232 VLS| Il Laboratory

Lab-1: Introduction to Verilog HDL Programming

Objective
The main objectives of this lab are:

e Basic terminology of Verilog HDL programming.
e Familiarization with different levels of Abstraction in Verilog HDL.
e Simulating Verilog HDL using ModelSim.

Introduction

A system or chip can be designed in two ways: analog design and digital design. In the analog
design process, circuit blocks are designed at the transistor level. Nowadays high performing
chips are designed with more smarter functions and that has increased the density of the
transistor in a chip. In VLSI (Very Large-Scale Integration) technology chips are designed with
more than 100,000 transistors. So it is not easy to design and verify such a complex system in an
analog process. In the digital design process, according to the functionality of a chip, a
synthesizable RTL description of the system is modeled using the Hardware Description Language
(HDL). HDL gives the advantage of simulating and verifying the design output and functionality
easily before they were fabricated on chips. For a long time, programming languages such as
FORTRAN, Pascal, and C were used to describe sequential computer programs after that
Hardware Description Languages (HDLs) came into existence to model the concurrency processes
found in hardware elements. Some common HDLs are Verilog, System Verilog, VHDL, VerilogA.

Verilog Module

Modules are the building blocks of the Verilog design. Modules can be embedded within other
modules, and a higher level module can communicate with its lower-level modules using their
input and output ports. A module should be enclosed within a module and endmodule keywords.
The following figure shows the structure of any Verilog module.

module module_name [(port_name{, port_name })];
[parameter declarations]
[input declarations]
[output declarations]
[imout declarations]
[wire or tri declarations]
[reg or integer declarations]
[function or task declarations]
[assign continuous assignments|
[initial block]
[always blocks]
[gate instantiations]
[module instantiations|
endmodule

Page 6 of 129

EEE 4232 VLS| Il Laboratory

Port Types

Port provides the interface by which a module can communicate with the internal and external
environment. Based on the direction of the signal Verilog language allows three types of ports.
Ports can be declared as follows.

Type of Port Verilog Keyword
Input port input
Output port output
Bidirectional port inout

Data Types
Verilog language has two primary data types called Nets and Registers.

1. Nets
e Represents structural connections between components.
e Declared as ‘wire’.
e By default, one bit.
e All port declaration are implicitly declared as wire in Verilog
2. Registers
e Represents the variables used to store data.
e Declared as ‘reg’.
e Stores/holds the last assigned value until it is changed.
e Must use register data type if a signal is assigned in procedural

In Verilog, “parameter” is used to declare constants and does not belong to any other data type such as register
or net data types. A constant expression refers to a constant number or previously defined parameter. We cannot
modify parameter values at runtime, but we can modify a parameter value using the “defparam” statement. In
modern RTL design, “localparam” is used to declare constants.

Port Connection Rule
Verilog simulator shows violations if port connection rules are violated.

DUT Block

I wire

inoutI wire

reg or wire | jnput Design Block Output wire

DUT Block wire wire orreg| DUT Block

Page 7 of 129

EEE 4232 VLS| Il Laboratory

. Input
e Internal input ports must always be net (wire) type.
e External input ports can be connected to reg or net type.

. Output
e Internal output ports can be either reg or net type.
e External outputs must be net type.

. Inouts

e Internally and externally inout ports must be net type.
e They are bidirectional.eg-power, ground, etc.

. Width Matching
It is legal to connect internal and external items of different sizes when inter-module port
connections. However, a warning is typically issued that the width does not match.

. Unconnected Ports

Verilog allows ports to remain unconnected. For example, a full adder module has three
inputs (A, B, C) and two outputs (sum, carry). So, if we don’t want to use any of the inputs
or outputs during the submodule call, we simply ignore that by keeping the place blank.
Example if a module is full_add(A, B, C, SUM, Carry) during the submodule call if we want
to ignore the C input can write as full_add al(x,y, ,zl)

Literals

Literals are used for representing constant numbers. The syntax for a constant is shown below.

—

* The number of binary
bits the number is
comprised of.

*Default is 32 bit

<size>’ <sign><base> <number>

\‘\b

*Indicates if the number is
signed.

*Either sor S.

*Not case sensitive.
*Default is unsigned

*Radix of the number.
*Binary: b or B
*Qctal:00or O
*Hexadecimal: h or H
*Decimal: d or D
*Not case sensitive.
*Default is decimal.

Number
according to
base.

Page 8 of 129

Example 01

EEE 4232 VLSI Il Laboratory

The following example demonstrates the Verilog syntax for different literals and data types.

reg [7:0]i;
reg[7:0]j;
a=549;

b=4'bx;
c=8'hfx;
d=‘h8FF;
e=5'd3;
f=8'b00001011;
g=8’b0000_1011;
h=8'b1011;
i=4’sb1011;
j=-4'sb1011;

O o NOUNWNR

N Rk kR
W N RO

parameter a,b,c,d,e,f,g,h; // declaration of multiple variables of parameter type

// reg type variable declaration which can store up to 8-bit

// reg type variable declaration which can store up to 8-bit

// decimal number 549, no size specified

//4-bit unknow value xxxx

// 8-bit number equivalent to 8b1111_xxx

// hex number, no size specified

// 5-bit decimal number 00011

//8-bit binary number 00001011

// “_”is a separator used to improve the readability of 8-bit number 00001011
//8-bit binary number 00001011

// 4-bit positive signed number 00001011

//initializes with 1011 then for negative sign 2s complement is performed which
is 0101 then 4 zeros are padded for signed value 00000101

Example 01 is not a complete Verilog Module it just demonstrates the syntax

Verilog Operators

To represent the functionality of a digital system different operators such as logical, bitwise, etc.
operators must be used. In the following table, different Verilog operators are shown.

Table demonstrating different operators

{} concatenation ~ bit-wise NOT

.- arithmetic & bit-wise AND

% modulus | bit-wise OR

> >= < <= relational = bit-wise XOR

| logical NOT A~ ~t bit-wise XNOR

& logical AND & reduct?on AND

I logical OR | reduction OR
~& reduction NAND

e logical equality ~| reduction NOR

l= logical inequality A reduction XOR

=== case equality ~A A~ reduction XNOR

t== case inequality << shift left

7 conditional >> shift right

Page 9 of 129

EEE 4232 VLS| Il Laboratory

Example 02

The following example demonstrates the basic logical syntax of basic logical operation used in
digital system representation. We can represent the logical expressions in two ways called Gate
Instantiations and Continuous Assignment.

O oONOTULANWNR

N R R RRR
N WN RO

module gates(A,B, Yn,Ya,Yo,Yx, Zn,Za,Z0,Zx);
// Gate Instantiations
output Yn,Ya,Yo,Yx;

input A, B;

not g1(Yn,A);

and g2(Ya,A,B);

or g3(Yo,A,B);

xor g4(Yx,A,B);

// Continuous Assignment
output Zn,Za,Zo,Zx;

assign Zn="A;

assign Za=A&B;

assign Zo=A|B;

assign Zx=A"B;
endmodule

Verilog Modeling Styles

Digital systems are generally modeled in four ways called Switch-level modeling, Gate level or
structural modeling, Data flow modeling (DFM), and Behavioral modeling.

N.B: RTL is a combination of Data Flow and Behavior Modeling styles. The logic synthesis tool
can generate a gate-level netlist from RTL.

1. Switch level Modeling

This method provides mechanisms for modeling MOS transistors using Verilog. This
modeling style is used in very specific cases, for designing leaf cells in a hierarchical design.
Switch-level modeling is not detailed enough to catch many of the problems.

Page 10 of 129

EEE 4232 VLS| Il Laboratory

Example 03

The following example demonstrates the Verilog HDL code of an CMOS inverter using the switch
level abstraction.

vdd

4

—

pmos p1(Y,vdd,in);
nmos n1(Y,gnd,in);
endmodule

gnd
CMOS Inverter
1 | module inv_cmos(in,Y);
2 | inputin;
3 | output;
4 | supplyl vdd;
5 | supply0 gnd;
6
7
8

2. Gate level or structural modeling

In this method, a system is designed using predefined gates or user-defined
primitives. It is white box modeling because every design is visible inside the design.
It is the lower level of abstraction.

Page 11 of 129

EEE 4232 VLS| Il Laboratory

Example 04

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the gate level abstraction.

1

O oOoNULANWN

R R R R RR
N WN RO

/*

Steps for Gate Level Modeling

I. Develop the Boolean function of output
Il.Draw the logic diagram.

Ill.Connect the gates with nets(wires).
*/

module mux_2to1(s,l0,I1,Y);

input s,10,11;

output Y;

wire wl,w2,w3;

not gl(wil,s);

and g2(w2,10,w1);

and g3(w3,s,11);

or g4(Y,w2,w3);

endmodule

3. Data flow modeling (DFM)

In this method, a system is designed by specifying the data flow between input and
output. It uses continuous assignment statements to drive a value on a net or wire. It
is a higher level of abstraction than the gate level. It may be either black-box modeling
or white-box modeling depending on the design complexity.

Example 05

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the data flow modeling.

1

Lo NOULANWN

N R R RR
N WNRKRO

/*

Steps for Data Flow Modeling

1.0Obtain the relation between output and input.
Il.Impalement the logical relation using “assign” statement.
¥/

module mux_2to1(s,10,I1,Y);

input s,10,11;

outputy;

wire wl,w2,w3;

assign wl="s;

assign w2=10 & wl;

assign w3=s & 11;

assign Y=w2 | w3;

endmodule

Page 12 of 129

EEE 4232 VLS| Il Laboratory

4. Behavioral modeling

In this method, a system is designed and implemented in terms of a design algorithm
based on the behavior of the design and its performance. Verilog behavioral code
must be inside procedural statements/blocks only. It is the highest level of
abstraction. It is also known as black-box modeling.

Procedural Block

There are two types of procedural blocks in Verilog called “Initial” and “always” blocks.
Procedural blocks are evaluated in the order in which they appear in the code that’s why it is also
known as sequential statements. Procedural statements assign values to reg, integer, real or time
variables. Procedural blocks cannot assign values to nets.

a) “initial” Block
e Statements inside the initial block are executed only once.
e Executes at time zero.
e Used in Test bench

b) “always” Block
e Sensitivity list or list of signals that directly affect the output result must be
defined in always block.
e Whenever the value of a signal in the sensitivity list changes then the statements
inside the always block is executed.

always @ (sensitivity_list)
begin
[procedural assignment statement]
[if-else statement]
[case statement]
[while, repeat and for loops]
[task and function calls]

end

Example 06

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the behavioral modeling style. The always procedural block is used here to set the output
of multiplexer(y) whenever any of the inputs (lo and 11) or selection input (s) changes.

11 /*
2 | Steps for Behavioral Modeling
3 | I.Develop a behavioral algorithm (like ‘C’ programming).

Page 13 of 129

0O N UL A

11
12
13
14
15
16
17

EEE 4232 VLS| Il Laboratory

Il. According to the algorithm insert the behavioral statements inside the appropriate procedural
block

¥/

module mux_2tol(s,l0,11,Y);

input s,10,11;

outputreg;

always@ (s,10,11) //if we use always @* The * operator will automatically identify all sensitive variables.
begin

if(s==0)
Y=I0;
else
Y=11;
end
endmodule

Hierarchical Modeling

A Hierarchical methodology is used to design simple components to construct more complex
components There are two design approaches when writing code in a hierarchical style called
Top-Down and Bottom-Up methodology.Typically, designers use these two approaches side-by-
side to construct complex circuits.

1. Top-Down Methodology

In a top-down design methodology, we define the top-level block and identify the sub-
blocks necessary to build the top-level block. We further subdivide the sub-blocks until
we come to leaf cells, which are the cells that cannot further be divided.

Top-level block

Sub-block 1 Sub-block 2 Sub-block 3 Sub-block 4

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf Leaf
cell cell

Figure: Block representation of Top-Down methodology

Page 14 of 129

EEE 4232 VLSI Il Laboratory

2. Bottom-Up Methodology
In a bottom-up design methodology, we first identify the building blocks that are available
to us. We build bigger cells, using these building blocks. These cells are then used for
higher-level blocks until we build the top-level block in the design.

Top-level block

AARN

Figure: Block representation of Bottom-Up methodology

Example 07

The following example demonstrates the Verilog HDL code of a full adder following the
Hierarchical Modeling style. In the design, the half adder is constructed from the predefined logic
gates and then the half adder instance is used twice to design the full adder. This creates two
instances in the same module.

module Full_Adder(A,B,Cin,sum,carry); // Top module
input A,B,Cin;

output sum,carry;

wire s1,cl,c2;

Half_Adder sm1(s1,c1,A,B);

Half_Adder sm2(sum,c2,s1,Cin);

or ol(carry,c1,c2);

endmodule

CONOY UL KN WNR

10 | module Half_Adder(s,c,x,y); // macro cell

11 | input x,y;

12 | output s,c;

13 | xorsi(s,xy); // predefined primitive or leaf cells
14 | and cl(c,x,y);

15 | endmodule

N.B. One module can be instantiated to another module without maintaining the I/0O sequence using the
Name Wise Instantiation or Explicit method (.Exact_Port(Port_to_be_Assigned)).

Page 15 of 129

EEE 4232 VLS| Il Laboratory

Blocking and Non-Blocking Assignment

Blocking (=) and non-blocking (<=) assignments are provided to control the execution order
within an always block. All the previous examples of combinational circuits used blocking
assignments. But if the subsequent assignments depend on the results of preceding assignments
non-blocking assignments needed to be used. The following examples demonstrates the use of
blocking and non blocking assignments.

Example 08

In the following example, we have tried to design a shift register module named shift_reg using
the blocking assighment.

module shift_reg(clock,W,Q);

input clock,W;

output reg[3:0]Q;

always@(posedge clock)

begin
Q[3]=w;
Q[2]=Q[3];
Q[1]=Q[2];
Q[o]=Q[1];

end

endmodule

R O OO NIULANWNR

N =

Now let us try to realize the output of Example 07 for that let us consider Initially Q=0000 and
W=1. Now for the first two positive edges of the clock, the output will be following.

Output
//After the first positive edge of the clock
Q[3]=w=1;
Q[2]=Q[3]=1;
Q[1]=Q[2]=1;
Q[0]=Q[1]=1;
//After the second positive edge of the clock
Q[3]=W=1;
Q[2]=Q[3]=1;
Q[1]=Q[2]=1;
Q[0]=Q[1]=1;

Now from the output, we can notice that the output is always the same. For a shift registrar, we
know that the output will propagate bit-wise sensing each clock trigger but in the design of
Example 08 that is absent due to the use of blocking assignment as the variable update is
executed in the order they are coded. It should be noted that the blocking assignment blocks the

Page 16 of 129

EEE 4232 VLS| Il Laboratory

execution of the next statement till the current statement is executed. So, it can be said that
blocking assignment is useful for combinational circuits.

Example 09

In the following example, we have modified the shift_reg module of Example 08 by replacing
the blocking assignment with “non-blocking”.

module shift_reg(clock,W,Q);

input clock,W;

output reg[3:0]Q;

always@(posedge clock)

begin
Q[3]<=w;
Q[2]<=Q[3];
Q[1]<=Q[2];
Q[0]<=Q[1];

end

endmodule

R O LVLWONIMIULANWNR

N

Now let us try to realize the output of Example 08 for that let us consider Initially Q=0000 and
W=1. Now for the first two positive edges of the clock, the output will be following.

Output
//After the first positive edge of the clock
Q[3]=W=1
Q[2]=Q[3]=0
Q[1]=Q[2]=0
Q[0]=Q[1]=0
//After the second positive edge of the clock
Q[3]=w=0
Q[2]=Q[3]=1
Q[1]=Q[2]=0
Q[0]=Q[1]=0

Now from the output, we can notice that the output is propagating bit-wise by sensing each clock
trigger after using the blocking assignment as the variable update process is executed in parallel.
In this code execution of the next statement is not blocked due to the execution of the current
statement. This method is useful for modeling sequential circuits and generating concurrent
statements.

There are three types of assignments in Verilog, continuous (assign), blocking (=), and non
blocking (<=).

Page 17 of 129

Example 10

The following example demonstrates the Verilog HDL code of a D Latch

EEE 4232 VLS| Il Laboratory

module D_FF(clock,D,Q);
input clock,D;
output reg Q;
always@(*)
if(clock)
Q<=D;
endmodule

N L N WNR

Example 11

The following example demonstrates the Verilog HDL code of a D flip-flop. A D flip-flop is a 1-bit
data storage device that saves one-bit data depending on its input D and clock pulse. When a
clock edge is triggered, whatever input is present in D goes to the output Q.

module D_FF(clock,D,Q);

input clock,D;

output reg Q;

always@(posedge clock)
Q<=D;

endmodule

AN WN R

Example 12

The following example demonstrates the Verilog HDL code of a 4 to 2 priority encoder with a
valid bit. In the example, the casex statement is used. In Verilog, there are three types of

variations in case. The case, casex and casez all

do bit-wise comparisons between the

selecting case expression and individual case item statements. In the case statement, the values
x or z in an alternative are checked for an exact match with the same values in the controlling
expression. On the other hand, casexignores any bit position containing an ‘x’ or ‘Z’. The

casez statement only ignores bit positions with a ‘z’.

module p_encoder_4to2(D,Y,V);
input [3:0]D; //declaring variable for input
output reg [1:0]Y; //declaring variable for output
output reg V; //declaring the variable for valid bit
always@ *
begin
casex(D)
4'b0001:
begin

=~

Y=2'b00; V=1,

R O LWL NIULANWNR

=~

end

Page 18 of 129

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

EEE 4232 VLS| Il Laboratory

4'b001x:
begin
Y=2'b01; V=1;
end
4'b01xx:
begin
Y=2'b10; V=1;
end
4'b1xxx:
begin
Y=2'b11; V=1;
end
default:
begin
Y=2'bx; V=0;
end
endcase
end
endmodule

Page 19 of 129

EEE 4232 VLS| Il Laboratory

Simulating Verilog HDL

1. Find the following icon on your PC and double-click on the icon to run the software.
(Search: ModelSim - Intel FPGA Starter Edition Model Technology ModelSim - Intel FPGA
Edition vsim 2020.1 (Quartus Prime 20.1))

M

™ ModelSim - INTEL FRGA STARTER EDITION 2020.1 - [m] x

2. The following window will pop up.

File Edit View Compile Simulste Add Library Tools Layout Bookmarks Window Help

CR-g =] i@ | O-MEN|SDEBH| ¢ I Lavout [iioDesign -
3 NI RS “ | 30 - @ g & || SRR AR B
i worary i + o x| | g Wave - Defoult R
¥iMame [tme [patn | | e e
o i) work Lbrary C:/Users/Adnan/Desks ji =
s+l 220model Library $MODEL_TECH/. . falter 2 =
ol 220model_ver Library SMODEL_TECH/.. /alter j23)
s 4l siters v tes
r y
a
r
a
-
o
-
o
-
: bﬂon = _I
| 2] i [T O] |
X|Find: 3| | searchror = (@ Wi
= & [Find: |8, (i
+ X
20.1/modelsim_ase/win32aloem/../modelsim.ini J

Onsto 1us <No Design Loaded > <No Context>

3. Execute File > New - Project. The Create Project window will appear.

ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1
File Edit View Compile Simulate Add Library Tools Lz

I New | Folder M E
Open... L
Load > Project... < B by
Close Library... =
Import Lg Debug Archive.. =—i|-'
Export
Save trl+5

Repaol

Change Directory...

4. In the Create Project window change the Project Location to your directory (e.g.
D:/150205022/Lab-1/Full_Adder) and give a name in the Project Name field. After that
click on the OK button.

[Project name must be same as the top module]

Page 20 of 129

EEE 4232 VLSI Il Laboratory

M Create Project X

Project Name
Full_Added

Project Location
D:/150205022/Lab-1/Full_Adder Browse...

Default Library Name
work
—Copy Settings From
modelsim ase/modelsim.ini Browse...

%' Copy Library Mappings (" Reference Library Mappings

OK Cancel |

5. The Add items to the Project window will appear. Select the Crete New File button.

M Add items to the Project >
Click on the icon to add items of that type:

) R

Create New File Add Existing File

M 3

Create Simulation Create New Folder

Close

6. In the Create Project File window fill up the File Name field which must be identical to
the project name and top module name. Also, select Verilog from the Add file as type
dropdown menu. And ten click OK button.

M Create Project File >
File Name
Full Addex] Browse...
—Add fleastype———————— [Folder
[Verilog -l [Top Level -l

o ICancel|

Page 21 of 129

EEE 4232 VLS| Il Laboratory

7. The Add items to the Project window will appear again. Click on the Close button.

M Add items to the Project pid
Click on the icon to add items of that type:

0]

Create New File Add Existing File
™M £3
Create Simulation Create New Folder

I Close

8. Now the ModelSim window will look like the following figure.

ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1 - O s
File Edit View Compile Simulate Add Project Tools Layout Bookmarks Window Help

J B-= & $.5. % Layout |NoDesign j ‘

J ColumnLayout |A11Columns

|- a-g@a-3|

j - L PUEEY vl g @ ‘ ® R R R
Iy

{¥¥)5022/L.ab-1/Full_Adder/Full_Adder ::: +| & x|| | gm| Wave - Default + & x|

|Name [Sudrpe Jorseh ___l

l Fu"Adderv ? VEHIDOD 1 .I- |
-

Zme
T Cursor 1

Kl o] |

L] |] :
[l tbrary 44 project sl || XIFind: & o 4 SearchFor v | [{a) W *
R Transaript s # d x|
Loading project aa =]
+ reading C:/intelFPGA_lite/20.l/modelsim_ ase/win32aloem/../modelsim.ini

Loading project Full_Adder

ModelSim > =

Ons to 497 ns Project : Full_Adder |<No Design Loaded> p Context>

Page 22 of 129

9. Now to open the editor window execute File = Open...

EEE 4232 VLS| Il Laboratory

M ModelSim - INTEL FPGA STARTER EDI

Edit View Compile Simulate

MNew » fe‘;,, &
Load 3

Close Project

Import »

ﬁ' Open File
+ B

MNew folder

150205022 Lab-1 Full_Adder

Organize
Name Date

. work
B Full_Adder.v

OneDrive - Persor

MW This PC
#" 3D Objects
M Desktop
B Documents
Downloads
Music
B3 Pictures
s Videos
= Local Disk (C:)
== New Volume (D:

— Mlmsss Wnlssmmm FEaY

File name: | Full_Adder.v

11. In the editor window write the Verilog module of your design
executing Ctrl+S every time.

04-Now-22 1
04-Nov-22 1:46 AM

modified Type

WM File folder

Text Documen

HDL Files (*v;* vl *.vhd:* vhdl* ~

I Cancel

Open

. And save using the shortcut

| D:/150205022/Lab-1/Full_Adder/Ful_Adder.v - Default

JllES

Ln#

module Full Adder(sum, carry, a, b, c):
input &,b,c;

output sum, Carry;
asaign sum=a‘b"c;

233ign car (agb) | (b
sndmoduls

o

ry=

£
o

£
o

c) | (cea)

Page 23 of 129

EEE 4232 VLSI Il Laboratory

12. Now click on the Compile All icon for compiling the design.
[alternatively, execute Compile - Compile All]

13. After successful compilation you will get the following message will appear in the
Transcript window.

A Transaript e 44X
¢ reading C:/intelFPGR 1ite/20.1/modelsim ase/wind2aloen/../modelsim. ind ﬂ
Loading project Full Adder

Compile of Full Adder.v was successful.

Modelsm> E

14. Now to simulate the design click on the Simulate icon.

[alternatively, execute Simulate-> Start Simulation..]

%

O-AT M| x0x B A

15. The Start Simulation window will appear. From the Design tab, execute work = <click
on your project module name> and click on the OK button.

M Start Simulation x
Design I VHDL] Verilog] Libraries] SDF] Others] <3
TlName ‘-"Tvpe IPth ‘ ‘ﬂ
=4l work Library D:/150205022/Lab-1/Ful_Adder jwork

L 7 Full_Adder Module D:/150205022/Lab-1/Ful_Adder/Ful _...
Vi Library SMODEL_TECH/. . fvital2000

verilog Library SMODEL_TECH/. . fverilog
! Library SMODEL_TECH/.. [alteraverilog/twent...
twentynm_hssi_ver Library SMODEL_TECH/.. [alteraverilog/twent...

s

twentynm_hssi Library SMODEL_TECH)/. . faltera fvhdl/twentyn...
-4k} twentynm_hip_ver Library $MODEL_TECH].. falterafverilog/twent...
++fli} twentynm_hip Library $MODEL_TECH].. falterafvhdlftwentyn...
+lil twentynm Library $MODEL_TECH].. falterafvhdlftwentynm j
=] 2
Design Unit(s) Resolution
work.Full Adder default Wi

Page 24 of 129

EEE 4232 VLSI Il Laboratory

16. The following message will appear in the transcript if everything is done correctly.

ModelSim> vsim -gui work.Full Adder
vsim -gui work.Full Adder
Start time: 04:03:27 on Nov 04,2022
Loading work.Full_Adder

17. The input and output variables defined in the Verilog will appear in the Objects window.

$a objects EE L | £|

18. Now go to the Wave window and select all the input and output variables of the Objects
window and by right-clicking on your mouse execute Add Wave to place them in the
Wave window.

g Wave - Default

Regi.
Regi.
x Regi.

View Dedaration

View Memory Contents

ave
Add Wave To
Add Dataflow Ctrl+D

Add to »

UPF »

Copy Ctrl+C
Find... Ctrl+F

Page 25 of 129

EEE 4232 VLS| Il Laboratory

19. All the input and output variables will be placed on the wave window and the wave
window will look like the following.

1@ Wave - Defauit it + & x|

S [

9 [Ful_Adder/a i Al

X|Find: ﬁﬂ'
mm|Wave | | Ful_Adder.v | KE|

Y | searchFor v | [{a} V¥ *

20. Now apply clock to each input variable. Right-clicking any input variable and from the
popped-up menu execute Modify - Clock.

g Wave - Default
I

:, .IFI_III -_ai .- .- —
P Object Dedaration

Add
— Edit

= Wiew

|_ I] =
Radix
Format

Last w

Combine Signals. ..

0.00 ns

Page 26 of 129

EEE 4232 VLS| Il Laboratory

21. The Define Clock window will appear. Set parameters as per your requirement keep in

mind all the units are in picoseconds by default.

M Define Clock
Clock Mame
im: /Full_zddersa

offset Duty
[n] 50
Period Cancel
100

Logic Values

High: |1 Low: |0

First Edge
{” Rising * Falling

Ok

Cancel

22. After defining all the input clocks, to evaluate the outputs write run 100 ps on the
Transcript of ModelSim. Then the simulation will be performed for 100 ps.

F 1 Transcript

force —-freeze sim:/Full Addersa 1 0, 0 {50 ps} -r 100
force -freeze sim:/Full_ Adder/b 1 0, 0 {25 ps} -r 50
force —-freeze sim:/Full_ Adderfsc 1 0, 0 {12 ps} -r 25
VSIM 24> run 100 ps

VSIM 25>

WSIM 25>

MNow: 100 ps Delta: 1 sim: Full_Adder

Alternatively, we can run the wave output using the Run icon by typing the Run length

sl o s

[Give run length according to your requirement.]

Page 27 of 129

EEE 4232 VLS| Il Laboratory

23. The wave window will look like the following figure after simulation.

s Wave - Default

el x]

5 wH.8 RBD: o ME| GTEAH| Mtew H welLnsEe QRo| fAt LAt
| | I |

|%-a3-22-3

J\Eﬁgy Eblgéﬂtﬂ% R
K T

£ frul_Adder/a

Cursor 1 154ps

B dgg || aa@sun || D LW ET
R B

Simulate - Restart

If you need to change the clock pulse you must reset all the clocks before changing clocks
otherwise the inputs and outputs will change after the previous run time which is not a
convenient way to represent the inputs and outputs. The command “restart” is used in the
transcript for resetting all the clock. Alternatively, restart can be performed by executing

Showing Binary values on the Wave

Sometimes it is hard to verify the functionality of a digital system from the wave. For easy
functional verification, we can read the binary values from the wave of ModelSim by doing the

following steps.

I. Select all the input and output variables on the clock and right-click on the mouse

and execute Radix = Binary.

_ O, . Symbolic
+ i T T 4 B o - —
o || & & T ol R || Be - RS
Octal
Decmal
M Wawe - Default Unsigned
R Y Hexadecmal
9 (Full_Adderja Mo Data- ASCII
9 (Full_adder/b Mo Data- Time
=9 [Full_Adder jc Mo Data- Sfixed
4 /Full_Adder fsum Mo Data- Ufixed
 fFull_Adder fcary o Use Global Settin
o fFull / Object Dedaration =
Show Base
Add L
Edit L Mumeric Enums
View L Symbolic Enums
LIPE (3 1 float32
cul Radix 2 floats
I Format L4 4]
x|Find: [Cast to »

Page 28 of 129

EEE 4232 VLS| Il Laboratory

II. After changing the Radix, change the Format type similarly by selecting all input
and output variables on the wave by right-clicking on the mouse and then
executing Format - Literal.

Cast to 3 Logic
o Event
Combine Signals. ..
Group... Analog (automatic)
Ungroup Analog (custom)...
[ll. Now on the wave, binary values will be displayed which can be easily analyzed.
g8 Wave - Default g + & x|

100 ps
Cursor 1 179 ps

L] oK 2 [

[| [KW

Changing Clock Unit

In step 21 it is mentioned that ModelSim’s default timing unit is picosecond. But in some cases,
we may need to define clocks in other units. Let us consider, that we need to define the period

of a, b, and c as 10ms, 5ms, and 2.5ms respectively. Now define the clock a, b, and c as shown in
the below figures.

M Define Clock ¥ | WA Define Clock % M Define Clock *
Clock Name Clock Name Clock Name
sim:/Full Rdder/a sim:/Full Adder/b 3im:/Full Adder/c
offset Duty offset Duty offset Duty
u] 50 1] 50 a 50
Period Cancel Period Cancel Period Cancel
= | =1, |
Logic Values Logic Values Logic Values
High: |1 Low: |0 High: |1 Low: |0 High: [1 Low: |0
First Edge First Edge First Edge
" Rising * Falling " Rising © Falling ¢ Rising " Falling
Ok Cancel oK Cancel CK Cancel

Page 29 of 129

EEE 4232 VLS| Il Laboratory

To view output for all the input combinations the run length should be equal to the maximum

period.

& 4 4m F |

10 ns 4] EUEE L X &

As all the units are in milliseconds, for easy visualization we can change the time units of the wave
grid by executing Wave - Wave Preferences - Grid & Timeline - Time units - ms.

O at

Layout

Wawve Edibor

Refresh Display
Assertion Debug
Assoc Array Wiew
Zoom

Expanded Timea

Mouse Mode
Cursors

Delete Window Pane (g)
Remove a'-\ll
Signal Seardch. ..

Virtual Builder . .
Filter 'L‘Uaueforrn - {h)

Bookmarks

I Wawe Prefa’ms =

™M

Display Grid & Timeline HE

Iv Grid Configuration

Grid Offset Minimum Grid Spacing

0 ps 40 (pixels)
Grid Period
v Auto Period

Reset to Default

1 ps

Timeline Configuration
{* Display simulation time in timeline area

" Dizplav grid period count (cyde count)

™ uUse commas in ime values

[T Show frequency in cursor delta

Cursor Control

¥ Left Mouse dick in wave area moves the dosest cursor to the mouse location

I Ok ICanceI| Apply

Now the ModelSim wave window will look like the following figure.

ﬂ Wave - Default

Similarly, for femtoseconds, nanoseconds, and microseconds, we can use fs, ns, and ms

respectively

Page 30 of 129

EEE 4232 VLS| Il Laboratory

Post Lab Tasks

PwnNPRE

Test the functionality of each example (4-12) using the ModelSim wave.

Design three input NOR gate using the switch level abstraction.

Design a 4-bit Carry Look Ahead adder using the concept of hierarchical modeling.
Design a BCD adder using the behavioural modeling technique.

Page 31 of 129

EEE 4232 VLS| Il Laboratory

Lab-2: Introduction to Functional Verification
Using Verilog Testbench.

Objective
The main objectives of this lab are:

e Familiarization with test bench module.
e Learning different techniques for generating test vectors
e Verifying combinational circuits imposing test vectors.

Introduction

The test bench is an automated way of verifying and validating a digital design. A test bench is a
procedural block that executes only once. Particularly the “initial” procedural block is used for
the test bench. Only for repeated clock generation, the “always” procedural block is used. Test
bench generates clock, reset, and the required test vectors for a given design under test (DUT)
and hence by monitoring the output functionality of the design is verified. During synthesizing a
design, a test bench is not required it is required during simulation only.

—> —>
Stimulus »| Design Under Test ' Monitor
(DUT)
= ’

Block of Design Under Test

Rules of Testbench

I. Define timescale using the command “ “timescale <unit>/<precision> “.
II. Instantiate the top module in the test bench module.
[ll. Declare the input and output of design as “reg” and “wire” type respectively in the test
bench module.
IV. Specify the test vectors for different delays using the command “#<time_delaye>".
V. Use “Sdisplay()” or “Smonitor()” commands to show outputs for the given test vectors
in the transcript.

VI. The “initial” procedural block must be declared at least once.
VIl. Terminate testbench using the command “$finish”.
VIIl. Monitor the outputs for functional verification using the transcript and wave.

Page 32 of 129

EEE 4232 VLS| Il Laboratory

Example 01

The following example demonstrates the Verilog HDL code of a half adder.

module Half_Adder(s,c,x,y);
input x,y;

output s,c;

assign s=x\y;

assign c=x&y;

endmodule

AU AN WNR

The following Verilog HDL code demonstrates the Testbench Module of the half adder of

Example 01 for random test inputs.

“timescale 1ns/1ps

module HA_TB;

reg a,b;

wire s,c;

Half_Adder Ha_dut(s,c,a,b);
initial

begin

O o NOOULAN WNR

[T e)

N R O
H
g o
L
TR
\'_\ \'_\
o
T

#5 Sfinish;

=~
wW

end
endmodule

~
N

The previous Testbench Module of half adder can only generate test vectors for a certain interval
but not periodic. The following Testbench Module of half adder. The forever loop-like procedural

block “always” is used to generate periodic inputs.

‘timescale 1ns/1ps
module HA_TB;
reg a,b;
wire s,c;
Half_Adder Ha_dut(s,c,a,b);
Initial
begin
a=0; b=0;

ONOYUL AN WNR

9| end
10 | always
11 #10 a=~a; //for time period 20 ns
12 | always
13 #5 b="b; //fortime period 10 ns
14 | initial
15 #20 Sfinish;
15 | endmodule

Page 33 of 129

EEE 4232 VLS| Il Laboratory

Example 02

The following example demonstrates the Verilog HDL code of a full adder.

module Full_Adder(A,B,Cin,sum,carry);
input A,B,Cin;

output sum,carry;

wire s1,c1,c2;

Half_Adder sm1(s1,c1,A,B);
Half_Adder sm2(sum,c2,s1,Cin);

or ol(carry,cl,c2);

endmodule

O O NOULAN WNRKR

module Half_Adder(s,c,x,y);
input x,y;

output s,c;

assign s=x\y;

assign c=x&y;

endmodule

N R R R
W N RO

~
EN

The following Verilog HDL code demonstrates the Testbench Module of the full adder of Example
02 for random test inputs.

‘timescale 1ns/100ps
module Full_Adder_TB;
reg a,b,c;
wire sum, carry;
Full_Adder FA_DUT(a,b,c,sum,carry);
initial
begin
Smonitor(Stime, " a=%b, b=%b, c=%b, sum=%b, carry=%b", a ,b, c, sum, carry);
#0 a=0; b=0; c=1;
#5 b=1;
#5 a=1; b=1; c=1;
#5 Sfinish;

O o NOOULANWNR

N R R R
W N RO

end
endmodule

~
£

Page 34 of 129

Example 03

EEE 4232 VLS| Il Laboratory

The following example demonstrates the Verilog HDL code of a 2 to 4 decoder.

1 | module decoder_2to4(s,e,y);

2 | input [1:0] s;

3 | input e;

4 | output reg [3:0]y;

5 | integer k;

6 | always@ (s,e)

7 | begin

8 for (k=0;k<=3;k=k+1)

9 begin
10 if ((s==k) && (e==1))
11 ylkl=1;
12 else
13 y[k]=0;
14 end
15 | end
16 | endmodule

The following Verilog HDL code demonstrates the Testbench Module of the 2 to 4 decoder of

Example 03.

1| “timescale 1ns/1ps
2 | module decoder_2to4 TB;
3 | reg [1:0]s; reg e;
4 | wire [3:0]y;
5 | decoder_2to4 dut(s,e,y);
6 | initial
7 | begin
8 Smonitor(Stime, " e=%b, s=%b, y=%b", e ,s, y);
9 e=0;

10 #5 e=1; s=2'b00;

11 #5 s=2'b01;

12 #5 s=2'b10;

13 #5s=2'b11;

14 #5 s=2'b00;

15 #5 s=2'b01;

16 #5 s=2'b10;

17 #5 s=2'b11;

18 #5 Sfinish;

19 | end

20 | endmodule

Page 35 of 129

EEE 4232 VLS| Il Laboratory

The following Verilog HDL code demonstrates another Testbench Module to verify the 2 to 4
decoder of Example 03 which is efficient than the previous one.

1 | “timescale 1ns/1ps
2 | module decoder_2to4 TB;
3 | reg [1:0]s; reg e;
4 | wire [3:0]y;
5| integer i,j;
6 | decoder_2to4 dut2(s,e,y);
7 | initial
8 | begin
9 e=0;
10 Smonitor(Stime, "e=%b, s=%b, y=%b", e ,s, y);
11 for (j=1;j<=2;j=j+1)
12 begin
13 for (i=2'b00;i<=2'b11;i=i+1)
14 begin
15 #5 e=1; s=i;
16 end
17 end
18 #5 Sfinish;
19 | end
20 | endmodule
Example 04

A magnitude comparator is a combinational circuit
that compares the magnitude of two n-bit numbers A
and B. The comparison of two numbers is an operation
that determines whether one number is greater than,
less than, or equal to the other number. The outcome
of the comparison is specified by three binary
variables G, E, and S that indicate whether A>B, A=B,
and A<B respectively. In a magnitude comparator at a
time, only one output variable can be logically high.

n-bit
Magnitude

Comparator

m—p [(A:B)

B —p — 5 (A<B)

Block diagram of a magnitude comparator

The following example demonstrates the Verilog HDL code of a 2-bit magnitude comparator. The

module has 2 inputs A and B each are 2-bit numbers
When,

A>B outputs G=1, E=0,S=0

A=B outputs G=0, E=1, S=0

A<B outputs G=0, E=0, S=1

Page 36 of 129

O oo NOOULANWNR

NNNNNNRRRRRRRRRR
G ANWNRKROODOLOLNITGLANWNRKRDO

The

EEE 4232 VLS| Il Laboratory

module mag_comp_2bit(A,B,G,E,S);
input [1:0]A,B; // declaring 2-bit input variables A and B
output reg G,E,S;
always@* // * symbol means the sensitivity list will be detected automatically
begin
if (A>B)
begin
G=1'b1;
E=1'b0;
S=1'b0;
end
else if (A==B)
begin
G=1'b0;
E=1'b1;
S=1'b0;
end
else
begin
G=1'b0;
E=1'bO0;
S=1'b1;
end
end
endmodule

following Verilog HDL code demonstrates another Testbench module to verify the 2-bit

magnitude comparator of Example 04.

CONOY U N WN R

‘timescale 1ns/1ps

module mag_comp_2bit_TB;

reg [1:0]A,B;

wire G,E,S;

integer i,j;

mag_comp_2bit dut(A,B,G,E,S);

initial

begin
Smonitor(Stime, " A=%b, B=%b, G=%b, E=%b, S=%b", A, B, G ,E, S);
for (j=2'b00;j<=2'b11;j=j+1)

begin
A=j;
for (i=2'b00;i<=2'b11;i=i+1)
begin
#5 B=i;
end
end
#0 Sfinish;
end
endmodule

Page 37 of 129

Example 05

EEE 4232 VLS| Il Laboratory

The following example demonstrates the Verilog HDL code of delayed gates

U1

a >
b >

#S

c B>

U2

H4 out

“timescale 1ns/1ps

module delay_gate(a,b,c,f,out);
input a,b,c;

output out,f;

and #(5) U1(f,a,b);

or #(4) U2(out,f,c);
endmodule

NSO OGN WNR

The following Verilog HDL code demonstrates another Testbench module to verify the logic

arrangement shown in Example 05.

“timescale 1ns/1ps
module delay_gate TB;
reg a,b,c;

wire out,f;

delay_gate dut(a,b,c,f,out);
initial

begin

CONOY U AN WN R

a=1'b0; b=1'b0; c=1'b0;

9 #10 a=1'b1; b=1'b1; c=1'b1;
10 #10 a=1'b1; b=1'b0; c=1'b0;
11 #20 Sfinish;

12 | end
13 | endmodule

Page 38 of 129

EEE 4232 VLS| Il Laboratory

Simulating Testbench

1. Find the following icon on your PC and double-click on the icon to run the software.

(ModelSim - Intel FPGA Starter Edition Model Technology ModelSim - Intel FPGA Edition
vsim 2020.1 (Quartus Prime 20.1))

M

2. The following window will pop up.

M Modelsim - INTEL FPGA STARTER EDITION 2020.1
File Edit View Compile Simulste Add Library Tools Layout Bookmarks Window Help

AT W SEgw ‘ $ - - & || ravout MoDesign - ‘ ColumnLayout [A11Cc1

18 = [3-- =

H ol x| | gg Wave - Defauit

& @
[path

€:/Usars Adnan/Desktop/aa/sa/az
SMODEL_TECH/

BGA_lite/20.1/modelsin ase/wini2aloen/../modelsim.ini

Onsto 1us <No Design Loaded> <No Cantext>

3. Execute File > New = Project. The Create Project window will appear.

™M ModelSim - INTEL FPGA STARTER EDITION 2020.1

File Edit WView Compile Simulate Add Library Toeols Lz

Crew | ok e
Open... » |
Load » Project... i Bo 4 by
Close Library... =
Import Lg Debug Ardhive... =—i|!

Repo

Change Directory...

4. In the Create Project window change the Project Location to your directory (e.g.

D:/150205022/Lab-1/Full_Adder) and give a name in the Project Name field. After that
click on the OK button.

[Project name must be same as the top module]

Page 39 of 129

EEE 4232 VLSI Il Laboratory

M Create Project >

Project Name
Full_Added

Project Location
D:/150205022/Lab-1/Full_ Adder Browse...

Default Library Name
work

—Copy Settings From
modelsim ase/modelsim.ini Browse...

% Copy Library Mappings (Reference Library Mappings

I OK I Cancel ‘

5. The Add items to the Project window will appear. Select the Crete New File button.

M Add items to the Project x
Click on the icon to add items of that type:

]]

Create New File Add Existing File

™M 3

Create Simulation Create New Folder

Close

6. In the Create Project File window fill up the File Name field which must be identical to
the project name and top module name. Also, select Verilog from the Add file as type
dropdown menu. And then click the OK button.

M Create Project File >
File Name
Full Addex] Browse...
— Addfileastype] [Folder
Werilog wl [Top Level vl

o ICancel|

Page 40 of 129

EEE 4232 VLS| Il Laboratory

7. The Add items to the Project window will appear again. Click on the Close button.

M Add items to the Project >
Click on the icon to add items of that type:

[B

Create New File Add Existing File
= =
M i
Create Simulation Create New Folder
Close

8. Now the ModelSim window will look like the following figure.

ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1 - O *
File Edit View Compile Simulate Add Project Tools Layout Bookmarks Window Help

|B-sEes i 0E AL Yot e 1
J ColumnLayout [A11Columns !] ‘

J g e H Bt « 2 - Mo | Search | g ‘ SECE WNEE
{#¥] 5022/Lab-1/Full_AdderJFull_Adder 77 +| & x| | gm] wave - Default + 2 x|

*Tane smndrpe (oo | T Y A

l : ? vemlcgo 1 .I- |

T
sl Cursor 1 -ﬂ

| [N | K 2] o |

[brary =] i#8i project | <[5 | XlFnd: | E8, | 3B searchFor v | ™ fa) P ax
- Transcript Eikio] H & x|
Loading project aa =
+ reading C:/intelFPGA_lite/20.1/modelsim ase/win32aloem/../modelsim.ini

Loading project Full_Adder

ModelSim > |

Ons to 497 ns Project : Full_Adder |<No Design Loaded> p Context>

Page 41 of 129

EEE 4232 VLS| Il Laboratory

8. Now to open the editor window execute File - Open...

M ModelSim - INTEL FPGA STARTER EDI
m Edit View Compile Simulate

New PR oaie
Cbeu... i
Load L

Close Project

Import L

ﬁ' Open File
+ R 150205022 Lab-1 Full_Adder

Organize « MNew folder

OneDrive - Persor Name Date modified

B vork 04-No M

B This PC =
= B Full Adderv 04-Nov-22 1:46 AM

¥ 3D Objects

B Desktop

B Documents
Downloads
Music

BE= Pictures

= Videos
= Local Disk (C:)
== MNew Volume

— Mlesss Vnlismenn

File name: | Full_Adder.v v . HDL Files (*: whd;*vhdl* ~

ooer |

10. In the editor window write the Verilog module of your design. And save using the shortcut
executing Ctrl+S every time.

" D:JAUST Teaching/4232/VLSI-2 Verilog codes/VLSI -I1_Lab-2/E2 Full_Adder fFull_Adder.v - Default ——

Ln® |
B module Full_Adder(A,E,Cin, sum,carry);
2 input A,B,Cin;
3 gutput sum,cCarry;
4 wire al,cl,c2;
5 Half Adder sml(sl,cl,A,B):
; Half Adder sm2(sum,c2,sl,Cin);
7 or ol (carry,cl,c2);
- endmodule
% [module Half Adder(s,c,x,y):
10 input x,y;
11 output s§,c;
12 assign s=x*y;
233ign c=X&y;
14 endmodule

Page 42 of 129

EEE 4232 VLS| Il Laboratory

11. Now click on the Compile All icon for compiling the design.
[alternatively, execute Compile - Compile All]

o I

O-# W || xOX Bl 4|

12. After successful compilation you will get the following message will appear in the
Transcript window.

A Transaript s 4 X
reading C:/intelFPGR 1ite/20.1/modelsin ase/wind2aloen/../modelsim. ini j
Loading project Full Adder

}

Compile of Full Adder.v was successful.

ModelSim> "l

13. Now, to write the test bench code create a new Verilog file at first click on the project
window then execute Project-> Add to Project - New File...

Project | Tools Layout Bookmarks Window Help

Edit
YECE
I Add to Project
Remove from Project Existing File...
Update Simulation Configuration...
Folder...

Project Settings...

14. Now in the Create Project File window, fill up the File Name field which will be our test

bench module name. Also, select Verilog from the Add file as type dropdown menu. And
then click the OK button.

M Create Project File s
File Name
Full Adde r_TE! Browse...

Add file as type Folder

IVerilc:-g vl Top Level vl
OK I Cancel ‘

Page 43 of 129

EEE 4232 VLSI Il Laboratory

15. Now there will be two files under the project.

§ Ful_Adder.v Verlog 0 11/04/
|| Ful_Adder TB.v P Veriog 1 11/04/202203:25:15...

16. Open the testbench file following step 10 and write the testbench code in the editor.

Ln=
1 ‘timescale 1ns/100ps
2 [module Full Adder TB;
3 req a,b,c;
- wire sum, carry;
5 Full_Adder FA DUT(a,b,c,sum,carry);
6 initial
7 [begin
] smonitor(stime, " a=%tb, b=tb, c=%b, sum=%b, carry=tb", a ,b, ¢, sum, carry);
9 #0 a=0; b=0; c=1;
10 $#5 b=1;
11 #5 a=0; b=l; c=1;
12 #5 &finish;
13 - end

14 - endmodule

17. Now click on the Compile All icon for compiling the design.
[alternatively, execute Compile - Compile All]

0-#E ﬁ”_ XX Bl K || *ﬁ*m\

18. Now to simulate the design click on the Simulate icon.

[alternatively, execute Simulate-> Start Simulation..]

O-BEw | ok Bl u| v

Page 44 of 129

EEE 4232 VLSI Il Laboratory

19. The Start Simulation window will appear. From the Design tab execute work = <click
on your test bench module> and click on the OK button.

21.

ﬁ Start Simulation

L T OO T T

Desim]\ﬁ-DL]vej'iog]Libraries]S[F]OMs]

Type

[Paih |

Library
Module
Module
Module
Library
Library

D:/150205022/Full_Adder fwork
D:/150205022/Full_Adder /Full_Adder.v
D:/150205022/Full_Adder /Full_Adder_...
D:/150205022/Full_Adder /Full_Adder.v
SMODEL_TECHY/. . faltera/vhd|/220model
SMODEL_TECHY/. . faltera/fverilog/220m...

-4 Library ~ $MODEL_TECH/../alterafvhdl/altera

4 Library ~ $MODEL_TECH/../altera/vhdlfaltera_|...

+-li} altera_lnsim_ver Library $MODEL_TECHY/.. falteraverilog/altera. ..

+lil zltera_mf Library $MODEL_TECH)/.. falterafvhd|/faltera_mf ;]
2 >l
~Design Unit(s) Resolution

| ’7|default !‘

End time:
Errcors:
wsim —gui work.Full Adder TB
03:44:35 on Nowv 04,2022
Loading work.Full_ Adder TB
Loading work.Full Adder

Start time:

0, Warnings: 2

03:44:35 on Now 04,2022,

o J e

20. The following message will appear in the transcript if everything is done correctly.

Elapsed time:

0:04:

38

Graphically the functionality of the design can be checked from the wave window of the
ModelSim Simulator. Execute view - wave if it doesn’t appear automatically. Now go to
the Wave window and select all the input and output variables of the Objects window
and by right-clicking on your mouse execute Add Wave to place them in the Wave

window.

T | B How [+ »

gml| Wave - Defauit

M

Regi.

o

Regi.

X

Regi.

ave

Add to

View Dedaration
View Memory Contents

Add Wave To
Add Dataflow

UPF

Copy

Page 45 of 129

EEE 4232 VLS| Il Laboratory

22. All the input and output variables will be placed on the wave window and the wave
window will look like the following figure.

1 Wave - Default e + %

& [Ful_Adder TEJa

23. Now to evaluate the outputs write run 15 ns on the Transcript of ModelSim. Alternatively,
we can run the wave output using the Run icon by typing the Run length.

[Give run length according to your requirement.]

24. The Finish Vsim window will appear. Click No otherwise the ModelsSim will be closed
immediately.

M Finish Vsim

e Are you sure you want to finish?
Yes ‘ No

Page 46 of 129

EEE 4232 VLS| Il Laboratory

25. Now for the given test vectors the functionality of the design can be verified from the
wave output generated by the ModelSim simulator.

18 Viave -Defat ik RafiifEd
_ | e _. I

4 [Ful_Adder TBfcarry [5ti

| ' K B

X[Find: ﬁl j ﬂ“ SeachFor v | [{8 ¥

26. Functionality of the design can also be verified from the transcript generated by the
ModelSim simulator. Execute view - Transcript if it doesn’t appear automatically.

f{ Transaript

sim:/Full Adder TB/carry
VSIM 3> run
0 a=0, b=0, c=1, sum=l, carry=(
5 a=0, b=1l, c=1, sum=0, carry=
10 a=1, b=l, c=1, sum=l, carry=l
‘' Note: $finish : D:/150205022/Full_Adder/Full Adder IB.v(l2)
Time: 15 ns Iteration: 0 Instance: /Full Adder TB

e e e AR B e

Dreak 1n nodule full AQder 1o at L./ laUcUal IUll AOQEI l adder [b.V llne

Page 47 of 129

EEE 4232 VLS| Il Laboratory

Post Lab Tasks

1. Write a testbench program to test a full adder circuit with the signal shown below.

4] 10ms 20ms 30ms 35ms

2. Differentiate between -
a. Sfinish and $stop command.
b. Smonitor and $display command.

3. Isit possible to check the functionality of a sequential circuit from the transcript only?
Can we use the “always” procedural block in the Testbench module?

5. lsit possible to generate periodic stimuliin the testbench? If possible, generate the signals
of task-1 for two periods.

Page 48 of 129

EEE 4232 VLS| Il Laboratory

Lab-3: Modeling Sequential Systems and Finite
State Machine Using Verilog HDL

Objective
The main objectives of this lab are:

e Functional verification of sequential circuits using Verilog Testbench.
e Modeling finite state machine and its functional verification using Verilog Testbench.

Introduction

A digital system can be either in the form of combinational logic or sequential logic. In
combinational logic, the output of a circuit depends only on the presently applied inputs. On the
other hand, the output of a sequential circuit depends on the applied input and the present
states. Most practical digital systems are sequential. To design a digital system, the behavioral
abstraction is used as a reference to create and refine a synthesizable register transfer level (RTL)
abstraction that captures the desired functionality required by the design specification.

Example 01

Flip-flops are the building blocks of sequential circuits. In the following example, the Verilog HDL
code of a positive edge-triggered T flip-flop with reset is demonstrated.

module T_FF(T,clk,reset,Q);
input T,clk,reset;
output reg Q;
always@(posedge clk)
begin
if(reset==0)
begin
if (T)
Q<="Q;
else
Q<=

CONOY UL N WN R

N R R
N RO L

end
else

Q<=0;
end
endmodule

N R R
N W

=~
(o))

Page 49 of 129

Testbench Module of Example 01

EEE 4232 VLS| Il Laboratory

The following Verilog HDL code demonstrates the Testbench Module of the T flip-flop of Example 01.

‘timescale 1ns/1ps
module T_FF_TB;
reg T,clk,reset;
wire Q;
T_FF dut(T,clk,reset,Q);
initial
begin
T=0; clk=0; reset=1;

OCoONOULANWNR

end
always
#2 clk="clk;

e L
N R O

initial
begin

N
N W

#6 reset=0; T=1;
#4 reset=1; T=1;
#4 reset=1; T=0;
#2 reset=0; T=0;
#2 Sfinish;

RN R R R R
L o0 N W

end
endmodule

N
(=]

Example 02

The following example demonstrates the Verilog HDL code of a positive edge-triggered JK flip-

flop with clear.

module JK_FF(clk,J,K,Q,clear);
input clk,J,K,clear;
output reg Q;
always@ (posedge clk)
begin
if(clear==0)
begin
if (J==0 && K==0)
Q<=Q;
else if (J==0 && K==1)
Q<=0;
else if (J==1 && K==0)
Q<=1;

OO NN WNR

R R R RR
AR WN RO

else

~
U

Q<="Q;

~
(o))

end
else

N
c N

Q=0;

~
e}

end
endmodule

N
(=]

Page 50 of 129

Testbench Module of Example 02

EEE 4232 VLS| Il Laboratory

The following Verilog HDL code demonstrates the Testbench Module of the JK flip-flop of

Example 02.

“timescale 1ns/1ps
module JK_FF_TB;
reg clk,J,K,clear;
wire Q;
JK_FF JK_dut(clk,J,K,Q,clear);
initial
begin
clk=0; J=0; K=1;clear=0;

O oo NOOULLAN WN R

end
always
#2 clk="clk;

N R R
N R O

initial
begin

N
AN W

#2 clear=1; J=1; K=
#4 clear=0; J=0; K=
#4 J=1;

#4)=0;

#4 Sfinish;

0;
1

~
U

’

L
o N O

End
endmodule

~
o

N
(=]

Example 03

In this example a 4-bit ripple carry counter will be designed using the submodule of a T flip-flop
and each T filp-flop is designed using leaf module of D flip-flop. The block representation of the

ripple carry counter is shown below.

q0 gl

__

clock —a> tffo

D> 1 > 13

reset

4-bit ripple carry counter

d_ff
ck—a>

T flip flop using D flip flop

Page 51 of 129

EEE 4232 VLS| Il Laboratory

The following example demonstrates the Verilog HDL code of a 4-bit asynchronous ripple-carry

country as shown in the following block diagram.

O o NOULAN WNR

N NNNDNNMNMMNMNRKRRKRRRRRRR
ONDOLULANWNRODLOLWONDULANWNRKRDO

module rc_counter(q,clock,reset);
output [3:0] g;

input clock,reset;

t_ff tff0 (q[0], clock, reset);

t_ff tffl (q[1], q[0], reset);

t_ff tff2 (q[2], q[1], reset);

t_ff tff3 (q[3], q[2], reset);
endmodule

module t_ff (q,clk,r);//T-Flip-Flop
output g;

input clk,r;

wire d;

d_ff dff1(q,d,clk,r);

not n1(d,q);

endmodule

module d_ff (q,d,clk,r);//D-Flip-Flop
output reg g;

input d,clk,r;

always @(posedge r or negedge clk)
begin

if (r)
g<=1'b0;
else
q<=d;
end
endmodule

Testbench Module of Example 03

The following Verilog HDL code demonstrates the Testbench Module of the 4-bit asynchronous
ripple-carry counter of Example 03.

O oONDULANWNR

‘timescale 1ns/1ps
module rc_counter_TB;
reg clk, res;
wire [3:0]q;
rc_counter rc_counter_dut(g,clk,res);
initial
begin
clk=0;
end

Page 52 of 129

EEE 4232 VLS| Il Laboratory

10 | always

11 #5 clk="clk;
12 | initial

13 | begin

14 Smonitor(Stime, " clk=%b, res=%b, q=%b", clk, res, q);
15 res=1;

16 #15 res=0;
17 #180 res=1;
18 #10 res=0;
19 #20 Sstop;
20 | end

21 | endmodule

Example 04

The following example demonstrates the Verilog HDL code of a simple 8-bit accumulator. The
module is designed in such a way that when reset=1 the output is set to 0 and when reset=0 the

output adds the input.

1 | module accu(in, acg, clk, reset);
2 | input [7:0] in;
3 | input clk, reset;
4 | output reg [7:0]acc;
5 | always @(posedge clk)
6 | begin
7 if (reset)
8 acc<=0;
9 else
10 acc<=acc+in;
11 | end
12 | endmodule

Testbench Module of Example 04

The following Verilog HDL code demonstrates the Testbench Module of the accumulator of Example 04.

~

‘timescale 1ns/1ps
module accu_TB;
reg [7:0] in;
reg clk,reset;
wire [7:0] out;
accu dut(in, out, clk, reset);
initial
clk = 1'b0;
always
#5 clk = ~clk;

O oOoNULKNWN

=~
(=)

initial

~
~

Page 53 of 129

EEE 4232 VLS| Il Laboratory

12 | begin
13 #0 reset<=1; in<=1;
14 #5 reset<=0;
15 #50 Sfinish;
16 | end
17 | endmodule
Example 05

In this example, a 4-bit Arithmetic Logic Unit (ALU) shown in the following figure will be designed
using Verilog HDL. The top module of the ALU is alu_4bit and it is designed using three sub-
modules: logical_unit, arithmetic_unit, and control_unit. In the design, the two 4-bit inputs A
and B are fed to the inputs of arithmetic_unit and logical_unit modules to perform two different
arithmetic operations and two different logical operations according to the function table given
below. Thus the arithmetic_unit and logical_unit generates four outputs y1,y2,y3, and y4 which
are fed to the inputs of control_unit module which generates the 8-bit output Y from the
y1,y2,y3 and y4 depending on its 2-bit Opcode input. The output Y is also sensitive to the positive
edge of the clk input.

Opcode {

Inputs

clk

Arithmetic
Unit

— N Logical Unit

—— | y1=A+B

—2 | y2=A-B

——> y3=A&B

2 | y4=ADB

Control Unit ~ Y

The function table of the ALU is given below.

Function Table

Opcode Output (Y) Description of function
00 A+B Add Ato B
01 A-B Subtract B from A
10 A&B Bitwise AND
11 ADB Bitwise XOR

Page 54 of 129

outputs

EEE 4232 VLS| Il Laboratory

The following Verilog HDL code demonstrates the ALU mentioned in Example 05.

OCoONIMGLANWNR

ARADNDBDAAAMNAAEDNWWLWWLWWWWWWWWNNNNNNNNNNRRBRRRRRRRRR
NOUKXNWNROOOVLONIIULANWNRODLOOLONIITULLANWNRODLOLONINUAN WNRKRO

module alu_4bit(A,B,Y,clk,Opcode);

input [3:0]A,B;

input [1:0]Opcode;

input clk;

output [7:0]Y;

wire [7:0]y1,y2,y3,y4;

arithmetic_unit sm1(A,B,y1,y2);

logical_unit sm2(A,B,y3,y4);

control_unit sm3(y1,y2,y3,y4,clk,Opcode,Y);
endmodule

module arithmetic_unit(x,y,y1,y2);
input [3:0]x,y;
output reg[7:01yl,y2;
always@(x,y)
begin
yl<=x+y;
y2<=x-y;
end
endmodule

module logical_unit(x,y,y3,y4);
input [3:0]x,y;

output [7:0]y3,y4;

assign y3=x&y;

assign y4=x"y;

endmodule

module control_unit(y1,y2,y3,y4,clk,Opcode,Y);
input [7:0]y1,y2,y3,y4;

input [1:0]Opcode;

input clk;

output reg[7:01Y;

always@(posedge clk)

begin
if(Opcode ==2'b00)
Y<=y1;
else if(Opcode ==2'b01)
Y<=y2;
else if(Opcode ==2'b10)
Y<=y3;
else if(Opcode ==2'b11)
Y<=vy4;
else
Y<=0;
end
endmodule

Page 55 of 129

Testbench Module of Example 05

EEE 4232 VLS| Il Laboratory

The following Verilog HDL code demonstrates the Testbench Module of the 4-bit ALU of Example 05.

OCoONIGLANWNR

NRRRRRRRRRR
QLN NWNRDO

N
~

‘timescale 1ns/1ps

module alu_4bit_TB;

reg [3:0]A,B;

reg [1:0]0Opcode;

reg clk;

wire [7:0]Y;

alu_4bit dut(A,B,Y,clk,0Opcode);

initial

begin
clk = 1'b0; Opcode=2'b00; A=4'b0100; B=4'b1100;

end

always
#2.5 clk = ~clk;

initial

begin
#5 Opcode<=2'b01; A=4'b1000; B=4'b0111;
#5 Opcode<=2'b10; A=4'b1111; B=4'b1011;
#5 Opcode<=2'b11; A=4'b1001; B=4'b1010;
#5 Sfinish;

end

endmodule

Finite State Machine Design
In a sequential circuit, outputs depend not only on the applied input values but also on the internal
state. The internal state also changes with time. As the number of states in a sequential circuit is finite
it is also referred to as a Finite State Machine (FSM). FSMs need memory to hold the current state
and logic devices to determine the next state. Elevators(lift), vending machines, traffic signal systems,
password generators etc. are examples of FSM.
There are two types of finite state machines called the Mealy machine and the Moore Machine.

In Mealy machines, the output is a function of the current state and inputs. In Moore machines, the
output is a function of only the current state. To design FSMs, we need to find the state transition
diagram or the state table.
FSMs are modeled in Verilog with an always block defining the state registers and combinational logic
defining the next state and output logic.

INPUt —
—>

;! b1 f

. Current
Transition State | swt_ | Output |Output

Y

Logi M > Logi Transiti State | S Output |Output
0qIc emaory 0qIc | ransition ate | State .
Input . Logic Memory g Logic
/ . Al J \ A
Clock Clock_{,
Moore Machine Mealy Machine

Page 56 of 129

EEE 4232 VLS| Il Laboratory

Example 06

In this example, the Verilog HDL code of a Mealy machine is demonstrated that generates output
‘1’ when sequence 101 is detected in a bitstream.

1/0

o/0

0o/0

State Transition Diagram

The following Verilog HDL code demonstrates the sequence detector mentioned in Example 06.

CONOY AN WN R

NNNNNNNNNRRRRRRRRRR
O NOOULANWNROODLOGLONIINULNWNRKROO

module seq_101(i,clk,out);

input i,clk;

output reg out;

localparam S0=2'b00, S1=2'b01, S2=2'b10;
reg [1:0]state;

always@ (posedge clk)

begin
case (state)
S0O: begin
out<=i?0:0;
state<=i?51:50;
end
S1: begin
out<=i?0:0;
state<=i?51:52;
end
S2: begin
out<=i?1:0;
state<=i?S0:S0;
end
default:
begin
out<=0;
state<=S0;
end
endcase
end
endmodule

Page 57 of 129

Testbench Module of Example 06

EEE 4232 VLS| Il Laboratory

The following Verilog HDL code demonstrates the Testbench Module of the sequence detector

of Example 06 where 0101001010-bit stream is generated.

O oo NOOULLAN WN R

R R R RRRRRR
CONOY UL N WNRKRDO

“timescale 1ns/1ps
module seq_TB;
regi,clk;
wire out;
seq_101 dut(i,clk,out);
initial
clk=0;
always
#2 clk="clk;
initial
begin
#0 i=0;
H#5 i=1; #4 i=0; #4 i=1; #4 i=0;
#4 i=0; #4 i=1; #4 i=0; #4 i=1;
#4 i=0;
#4 Sfinish;
end
endmodule

Page 58 of 129

EEE 4232 VLS| Il Laboratory

Post Lab Tasks

1.

Design a negative edge triggered D flip flop with reset and verify its functionality using
testbench.

In Example 06 how many 1s will be generated at the output if the input bitstream is
010101007 Verify your answer using testbench.

Write a Verilog program to implement the digital system represented by the following
state transition diagram of a Mealy machine. Assume that system has input and output
variables in and Y. The system functions when the positive edge of the clock is detected.
1/0

0/0

Design a Mealy machine to detect the 010 sequences hence verifying its functionality

using testbench.
The state transition diagram of a two-bit counter is shown below. Assuming that each

state changes when a positive edge clock is detected. Design and verify the system using
Verilog HDL.

reset=3

Page 59 of 129

EEE 4232 VLS| Il Laboratory

Lab-4: Introduction to Unix Shell

Objective
The main objectives of this lab are:

e Logging into the Cadence software installed Linux server.

e To get started with the Linux environment.

e To comprehend the file and directory management using shell command.
e To get familiar with Vim text editor.

Introduction

Electronic Device Automation (EDA) tools are required to run for a long time which consumes a
huge amount of memory (RAM), runs in multiple threads/processes and are multiuser programs.
For that, Unix or Linux is the ideal choice to run (EDA) tools.

In the upcoming lab classes, we will use different cadence tools preinstalled on the Linux server.
For that, we have to login into your student account from the Windows operating system based
computer allocated for the student use.

Steps to Login into Linux Server

The following flowchart summarizes the steps to login into the Linux server.

Start XLaunch
Start Putty Open VLSI_LAB
session

v

Login ti server
Type the commands one by one
and press Enter:
csh
source cshrc.txt
gnome-terminal &

Page 60 of 129

EEE 4232 VLS| Il Laboratory

The detailed instructions are given below

1. Find the Desktop shortcut icon for XLaunch. Double-click on it. Click Next, Next, Next,
Finish (in that order) in the windows that pop up one after another.

20

XLaunch -
Shortcut

After it starts, you will see the Xming icon at the bottom right corner of your Desktop
screen.

2. Find the icon for Putty. Double click on it to open it. ‘Putty Configuration” window will
pop-up

3. Select VLSI_LAB under the ‘Saved Sessions’ category. Click Load and then click Open.

&R PUTTY Configuration K
Category:
F;]--S_ession Basic options for your PuTTY session
i Logging) -
& Terminal Specify the destination you wantto connectto
- Keyboard Host Mame (or IP address) Port
- Bell [172.16.16.160 |22 |
Eluw-i-nlzdeoe‘l;ures Connection type:
- Appearance (ORaw () Telnet (J)Rlogin @sSsH () Serial
?eha\;iour Load, save or delete a stored session
- Translation
.. Selection Saved Sessions
- Colours |VLSI Lab
=-Connection
. Data Load
- Proxy
- Telnet Save
- Rlagin Delete
#H-SSH
- Serial
Close window on exit
() Always () Never (@) Only on clean exit
3
About Open Cancel

4. Now you will see a Terminal window which prompts you for login.

& 172.16.16.160 - PUTTY - 0 X
login as: Jj

Page 61 of 129

EEE 4232 VLS| Il Laboratory

Log in to your workstation using your username and password. Your username will be
eee_<student id> and your password will be your student ID. When you are typing your
password, the command window will not display the characters you type in, so make sure
you are typing the right password. After logging in to your account, the terminal window
should look like the following:

@8 eee 150205105@aust: ~ — 0 X

login as: eee 150205105

eee_150205105€172.16.16.160"'s password:

Last login: Sun Dec 10 15:19:39 2023 from 172.16.16.166
[eee 150205105@aust ~15 ||

Type csh and press the ‘Enter’ key.

&2 eee 150205105@aust:~ - o X

login as: eee 150205105

eee 150205105@172.16.16.160"s password:

Last login: Sun Dec 10 15:19:39 2023 from 172.16.16.166
[eee 150205105@aust ~]15 csh

Then type source cshrc.txt and press the ‘Enter’ key. The following message will be
displayed in the Terminal window: Welcome to Cadence Tools That means you can use
Cadence tools now.

&2 eee 150205105@aust:~ — O X

login as: eee 150205105

eee 150205105@172.16.16.160"s password:

Last login: Sun Dec 10 15:19:39 2023 from 172.16.16.166
[eee 150205105@aust ~]5 csh

[eee 150205105@aust ~]$ source cshrc.txt

xS st s E S EEEEEEEE S LS EEE S LSRR LR Rt E

FEkEE Welcome to Cadence Tools FEEE TR
S S S EES S SEESEE RS LSS L SRS LSS SR EEEEEE L LSS LS

Finally type gnome-terminal & and press the ‘Enter’ key to enter the Command Line
Interface (CLI) of your account.

2

login as: eee 150205105

eee 150205105@172.16.16.160"'s password:

Last login: Sun Dec 10 15:36:02 2023 from 172.16.16.166
[eee 150205105@aust ~]5 csh

[eee_150205105@aust ~]$ source cshrc.txt
A A A A A A A A A T AT A kA h %

F ok ok Welcome to Cadence Tools F ok ko k&
EE S S EE R E L LSS SRR EEEEEE R EEEEEEEEEEEEREREEEEEREEEEEEEEEE]

[eee_150205105@aust ~]5 gnome—terminal &[]
The Command Line Interface (CLI) of your account will look like the following screenshot.
- |

File Edit View Search Terminal Help
[eee 150205105@aust ~]$ |}

Page 62 of 129

EEE 4232 VLS| Il Laboratory

Lab Task

The following flow chart summarizes the tasks to be performed in Lab-04.
| Log in to Server |

| Open the Terminal |

v

‘ Find the location of the present directory

v

Create a directory as Lab_4 and inside it create
another two directories as direct_1 and direct_2

/

Go to direct_1 ‘

v

Create Two files
test-1.txt and test-2.txt

v v

test-1.txt test-2.txt
Name: echo “Hello VLS| Enthusiasts”
Student ID:
Semester:

Read the content inside the test-1.txt and source
the test-2.txt files

v

Copy the contents of test-1.txt into a new file test-
3.txt

v

Delete the file test-1.txt ’—b‘ Go to direct_2

v

‘ Copy the test-3.txt file from the direct_1

v

‘ Check the content of the file

v

‘ Copy the directory direct_1 into the direct_2

v

Go back to the main directory where direct_1 and direct_2 directories are created

v

Delete the directory direct_1

Page 63 of 129

EEE 4232 VLS| Il Laboratory

Directory Management in Unix

Command Description Syntax
pwd print name of current/working directory. pwd
Is lists directory contents. Is
Is -Itr lists directory contents by arranging them Is -Itr
according to time by using the -Itr switch.
tree Show the file hierarchy inside a directory tree
mkdir make directories. mkdir <directory_name>
cd Change directory. cd <directory_path>
cd ~/ Goes to the home directory cd ~/
cd ™~ cd ~
cd .. Goes to the previous directory. cd ..
cd ../ cd../
cd ../../ Goes two directories back. cd./../

Vim Editor in Unix

Command Description Syntax
touch Creates a file.(Extension can be .txt, .v, .tcl, etc) touch test.txt
Press “i” orinsert | Enables the INSERT mode
: Writes/saves the text file.
:q Quits from vim editor.
'w(Writes the text and then quits the vim editor.
wq! Forcefully writes and quits the vim editor through
bang(!) The commands of the
:set nu Shows the line numbers. vim editor can be
<line no> The cursor moves to the specified line no. execu.ted after
:set nu! Removes the line numbers. pressing the Esc key.
:/xyz Used to search all the “xyz” in forward
(Use n to move from one to another)
?Xxyz Used to search all the “xyz” in backward
:%5=x=y=¢g Searches “x” and replaces with “y” globally
u Undo
Press Ctrl+R Redo

Reading and sourcing a file

Command Description Syntax
cat Checks the content inside a file. cat <file_name>
source Reads and executes commands from the file. source <file_name>
./ J/<file_name>

Page 64 of 129

Files and directory manipulation in Unix

EEE 4232 VLS| Il Laboratory

Command Description Syntax
cp Copies files and directories. cp <source_file> <destination_file>
rm Remove files. rm <directory_name>
rmdir Removes empty directories. rmdir <directory_name>
rm -rf Removes directories containing files by | rm -rf <directory_name>
force recursive using force recursive
switch.
mv Moves one or more files and directories to | mv<source_file> <destination_dir>

a given location (if the location is not
defined. it renames files on the current
location).

Other Useful Commands

Command/Key Description
history Prints the previous commands executed in the bash terminal.
(Syntax: history)
man Shows the documentation of any command
(Syntax: man pwd)

Shortcut Keys

Command/Key Description
Up/Down Arrow keys Scrolls through command history.
Tab key Used to complete the command you are typing.

Ctrl + Shift + C

Copies the highlighted command to the clipboard.

Shift + Insert

Pastes the contents of the clipboard.

Ctrl +L

Clears the terminal

Bash Script

Bash scripts are typically used for handling directories and files, not for coding. But it can
be useful for scripting with various arithmetic use cases and scenarios. Bash only supports integer
arithmetic, so if we need to perform calculations with floating-point numbers, have to use
separate utility in bash. There are several ways and syntax of performing arithmetic operations,
using conditions and loops in bash. The below code is just a simple demonstration of arithmetic
operations, if..else.. statement, for loop and array declaration in bash. A bash script can be
written using the vim editor and it should be saved with the extension .sh . The commands inside

the script can be executed by sourcing the script.

Page 65 of 129

O oo NOOULANWNR

=~
(=)

11
12
13
14
15
16

17
18

19
20
21
22

EEE 4232 VLS| Il Laboratory

a=10

read -p "enter b:" b
sum=$(($a+5b))
sub=5(($a-Sh))
mult=5(($a*$b))
div=5((Sa/Sb))
echo "sum=Ssum
Sa-Sb=Ssub
Sa*Sbh=Smult
Sa/Sb= Sdiv"

if [$((Sa%2)) =="0"]
then

echo "Sais even"
else

echo "$ais odd"

fi

c=(Ssum Ssub Smult Sdiv)

elements=S{#c[@]}

for((i=0;i < Selements;i++))

do
echo "${c[i]}"
done

#Stores user’s input in b variable by prompting in display using -p

#Using if..else.. statement to find whether a is even or odd

#storing different variables in array ¢
#Counts the no of elements present in the array c

#Using for loop to display all the elements present in array c

Post Lab Tasks

How fractional values can be handled in bash?
Write a bash script to perform the following arithmetic operation.

y = sin(5) + €3 + V3 + 2°

Write a bash script that will show your root and home location whenever it is sourced.
Write a bash script that will create the following hierarchy in your home.

Create a directory as

Inside the Linux_Practice

Linux_Practice

directory create three directories
asD_1,D_2 and D_3

Inside the D_1 create files as
tl.txt and t2.txt and write “hello
world” inside the tl.txt

Inside the D_2 create one file as
sl.sh

Inside the D_3 copy the t1l.txt
file from D_1 directory

Page 66 of 129

EEE 4232 VLS| Il Laboratory

Lab-5: Synthesis using Genus Synthesis Solution

Objective
The main objectives of this lab are:

e Familiarization with synthesis flow.
e Setting up synthesis constraints.
® Generating optimized gate-level netlist and Standard Design Constraints.

Introduction

Synthesis is a process of transforming RTL (a description of a circuit expressed in a language such
as Verilog or VHDL written in behavioral modeling or data flow modeling) to technology-
dependent or independent gate-level netlist including nets, sequential and combinational cells,
and their connectivity. The main goal of synthesis are obtaining a gate-level netlist, logic
optimization, inserting a clock-gating cell for power reduction, inserting DFT (Design for
Testability) cell, and maintaining the logical equivalence between RTL and gate-level netlist. The
best output of place and route depend on the synthesis.

Synthesis = translation + optimization + mapping

ifChigh_bits == 2'b10)begin
residue = state_tablefi];

end

else begin

residue = 16'h0000;
end % Translate

HDL Source
(RTL)

= =

No Timing Info.I:> %
=

Generic Boolean

Target Technolog

Fig: Steps of Synthesis
Synthesis tools perform the following three steps to meet all the goals.

* Translation: Converts RTL into basic Boolean equation form which is technology-
independent representation.
»= Optimization: Performs two types of optimizations.
o Logic optimization
= Detecting identical cell

Page 67 of 129

= Optimize multiplexer
= Remove unused cell and net
= Reduced word size of the cell

o Design optimization

EEE 4232 VLS| Il Laboratory

= Reduced WNS (Worst Negative Slack) and TNS (Total Negative Slack)

= Power and area optimization
= Attempting to meet DRV (Design Rule Violation: Max Fanout, Max

Transition, Max Capacitance)
= Mapping: Technology-independent Boolean logic equations are mapped to technology-
dependent library logic gates based on design constraints, and available gates in the

technology library.

Input and Output files of Physical Design

RTL LIB LEF Constraints
Synthesis
Gate level 5 \
Netlist reports SDC

= Input Files

Technology-Related Files

I. Technology file containing names, physical and electrical characteristics of metal

layers, and design rules (.lef)

II. Timing and functionality information of the standard cell (.lib)

Design Related Files

I. Post Synthesized or Gate Level Netlist (.v)

II. Standard Design Constraints containing all timing and design limitations (.sdc)

= Qutput Files

I. Post-synthesized and optimized gate-level netlist (.v)
II. Standard Design Constraints (.sdc)

Page 68 of 129

EEE 4232 VLS| Il Laboratory

Lab Task

In this lab, we will perform synthesis on the RTL of a 4-bit ALU designed and verified in Lab-3
(Example 5).

1.

8.

First log in to the VLSI lab server with the appropriate cadence license and launch Gnome-
Terminal. [Xlaunch = putty = login - csh-> source ~/cshrc.txt-> gnome-terminal&]

Then go to the home directory using the following command

‘ [eee_150205105@aust ~]$ cd ~ ‘

Create a directory as pd_lab

‘[eee_150205105@aust ~1$ mkdir pd_lab/ ‘

Check whether the directory is created or not using the following command

‘ [eee_150205105@aust ~]$ /s -ltr |

Go to the pd_lab directory by executing the following command

‘ [eee_150205105@aust ~]$ cd pd_lab/ ‘

Copy the necessary files from the root into the pd_lab directory by executing the
following command.

‘ [eee_150205105@aust pd_lab]$ source /physical_design_lab.sh

Make sure the following directories and the files are present in the pd_Ilab directory using
the command Is -Itr.

[eee_150205105@aust pd_lab]$ /s -/tr
total 12

drwxrwxr-X. 8 eee 156205105 eee 150205105 105 Dec 10 1509 pdk

drwxrwxr-X, 2 eee 156205105 eee 150205105 24 Dec 10 15:09 input files
“fw-r--r--, 1 eee 15020510 eee 150205105 597 Dec 10 15:09 cds.lib

“tW-rw-r--, 1 eee 156205105 eee 15020510 1528 Dec 10 15:09 synthesis script.tcl
“i-rw-r--. 1 eee 150209105 eee 150205105 192 Dec 10 15:09 streanut. tcl

Open the synthesis_script.tcl file using the Vim editor.

| [eee_150205105@aust pd_lab]$ vi synthesis_script.tcl |

Page 69 of 129

10

11

12

13

14

15

16

EEE 4232 VLS| Il Laboratory

9. Make sure the following commands are present inside the synthesis_ script.tcl file.

Commands

Description

set_db init_lib_search_path "pdk/stdcell"

Sets the value of a specific attribute. Here we are
setting directory name where all the timing libraries are
located.

set_db library "slow_vdd1v2_basicCells.lib"

Sets which timing library will be used while mapping

set_db lef_library "pdk/stdcell/gsclib045_tech.lef
pdk/stdcell/gsclib045_macro.lef"

Sets lef file of a target technology

set_db hdl_search_path input_files

Sets the directory name where RTL is located

read_hdl alu_4bit.v

Loads the design with pre-synthesized RTL

elaborate

Creates a design from Verilog module. Undefined
modules are labeled as unresolved and treated as
blackbox

set_top_module alu_4bit

Sets top module name

current_design alu_4bit

Changes the current directory in the design hierarchy to
the specified design

write_hdl > alu_4bit_elaborated.v

Creates a structural netlist from elaborated design

create_clock -name clk -period 10 [get_ports clk]

Creates a clock named “clk” having 10ns period in a
specific port “clk”

set_clock_uncertainty -setup 0.5 [get_clocks clk]

Sets uncertainty value for the clocks while calculating
setup

set_clock_uncertainty -hold 0.5 [get_clocks clk]

Sets uncertainty value for the clocks while calculating
hold

set_max_transition 2 [get_ports clk]

Sets maximum allowable transition time for changing
logic state to 2ns for data path

set_clock_transition -min -fall 0.5 [get_clocks clk]

Sets minimum allowable clock transition time to 0.5ns
for switching logic state from high to low for clock path

set_clock_transition -min -rise 0.5 [get_clocks clk]

Sets minimum allowable clock transition time to 0.5ns
for switching logic state from low to high for clock path

set_clock_transition -max -fall 0.5 [get_clocks clk]

Sets maximum allowable clock transition time to 0.5ns
for switching logic state from high to low for clock path

Page 70 of 129

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

EEE 4232 VLS| Il Laboratory

set_clock_transition -max -rise 0.5 [get_clocks clk]

Sets maximum allowable clock transition time to 0.5ns
for switching logic state from low to high for clock path

set DRIVING_CELL BUFX8

Defines driving cell name which will drive the input
ports of the design

set DRIVE_PIN {Y}

Defines driver pin of the driving cell

set_driving_cell -lib_cell SDRIVING_CELL -pin
SDRIVE_PIN [all_inputs]

Sets driving cell properties for all the input ports

set_max_fanout 10 [current_design]

Sets maximum allowable fanout number to 10

set_load 0.2 [all_outputs]

Sets load capacitance of the output ports of the design

set_operating_conditions PVT_1P08V_125C

Sets operating condition for delay calculation

set_input_delay 0.5 -clock [get_clocks clk]
[all__inputs]

It defines the arrival time (relative to a clock edge on
input ports or internal input pins) from an external
register to an input port of the module. It describes
the amount of time for which the signal is available at
the specified input port after a clock edge.

set_output_delay 0.5 -clock [get_clocks clk]
[all_outputs]

It specifies output path delay on output ports which
defines the external delay from an output port to
external register. It describes the amount of time
before a clock edge for which the signal is required.

set_dont_use SDFFQX*

Set the attribute of SDFFQX* cell as don’t use so that
the cell will not be used while synthesis

remove_assign -buffer_or_inverter BUFX16 -
design [current_design]

Removes assign statement using BUFX16 cell

syn_gen

Performs generic synthesis

write_hdl > alu_4bit_generic.v

Creates a structural netlist using generic logic after
generic synthesis

syn_map

Performs mapping using target timing library

write_hdl > alu_4bit_post_synthesis.v

Creates a structural netlist using mapped logic after
mapping

set_remove_assign_options -buffer_or_inverter
BUFX12 -verbose

Sets buffer or inverter cell to remove assign statements

remove_assigns_without_opt -buffer_or_inverter
BUFX12 -verbose

Removes assign statement using BUFX12 cell

syn_opt

Performs logic optimization after mapping

Page 71 of 129

EEE 4232 VLS| Il Laboratory

35 | write -mapped > alu_4bit_mapped.v Writes mapped netlist for post-synthesis flow

36 | write_sdc > alu_4bit.sdc Writes constraints file for post-synthesis flow

10. After checking the synthesis_script.tcl close the Vim editor by executing Esc = :q

11. Now make sure you are in the pd_lab directory. And launch the Genus tool using the
command genus.

| [eee_150205105@aust pd_lab]$ genus

12. If the Genus tool is successfully launched, the following text will be shown in the terminal.

[TMPDIR is being set to /tmp/genus_temp_l10669 aust_eee 150205105 hLNSKO

ICadence Genus(TM) Synthesis Solution.

Copyright 2023 Cadence Design Systems, Inc. ALl rights reserved worldwide.
ICadence and the Cadence logo are registered trademarks and Genus is a trademark
lof Cadence Design Systems, Inc. in the United States and other countries.

1[16:19:35.408009] Configured Lic search path (21.01-5002): 5280@aust
[

Version: 21.18-5082 1, built Tue Jul 18 00:08:41 PDT 2023

Options:

Date: Sun Dec 10 16:19:35 2023

Host: aust (x86_64 w/Linux 3.10.0-1160.e17.x86_64) (4cores*4cpus*lphysical cpu*Intel(R) Xeon(R) CPU E5-2467 v2 @
2.40GHz 10240KB) (16195228KB)

PID: 10669

0S: Red Hat Enterprise Linux Server release 7.9 (Maipo)

[16:19:35.505579] Periodic Lic check successful

[16:19:35.505592] Feature usage summary:

[16:19:35.505593] Genus_Synthesis

Checking out license: Genus Synthesis
‘OOQQO\‘OOO&O{QO0000{0000000400000004000006'000000000000904000&00{000000#‘00000'0000000‘000‘0#00000000“00000

|

o oo oo ook oK oK oK oK oK oK ok oK o oK o oK oK o o o oo o o o o ook ook ok ok ok ok oK ok ok oK R ok ok o ok ot ok o ok ok KoK R oK KR K oK K R oK K K K K R R ROK Ok ok ok ok ok K

Loading tool scripts...
Finished loading tool scripts (16 seconds elapsed).

saenus:root: 1>

13. Now source the synthesis_script.tcl file to perform the synthesis of the RTL present in the
input_files directory.

| genus@root> source synthesis_script.tcl

14. After successfully execution of synthesis_script.tcl file, the Genus tool will show that the
SDC file export is finished.

Info : Done incrementally optimizing. [SYNTH-8]
: Done incrementally optimizing 'alu_4bit'.

flow.cputime flow.realtime timing.setup.tns timing.setup.wns snapshot
um:* syn_opt
@file(synthesis _script.tcl) 42: write -mapped > alu_4bit_mapped.v
@file(synthesis_script.tcl) 43: write_sdc > alu_4bit.sdc
Finished SDC export (command execution time mm:ss (real) = 00:00).
#@ End verbose source ./synthesis_script.tcl
@genus:design:alu 4bit 2>]

Page 72 of 129

EEE 4232 VLS| Il Laboratory

15. Now to show the synthesized output execute the command gui_show.

‘ genus@design:alu_4bit> gui_show

The GUI window of the genus synthesis output will be opened. Then select the schematic
view by following the screenshot given below.

X Genus(TM) Synthesis Solution 21.1 - /home/fall18/eee_150205105/pd_lab

- O X
File DFT Floorplan Power Timing Tools Windows Help

cadence
Design Browser

StdCells :
HDL Viewer
Bl Hier Cell - alu_dbit,| Design Browser
Terms (19) Object Attributes

Nets (74)
[StdCells (63)

If you click and zoom into each block of the circuit, you will be able to view the gate
interconnections inside the block.

X Genus(TM) Synthesis Solution 21.1 - /home/fall18/eee_150205105/pd_lab

ad X
File DFT Floorplan Power Timing Tools Windows Help

(+]
Fr)l
;ldCeI\s n A

cadence

Design Browser

Schematic +]

[Hier Cell - alu_4bit, 63 LeafCells
Terms (19)

Nets (74)
& StdCells (63)

Ialu_dbut

n ‘ Module view

16. Close the GUI window and exit the Genus tool using the exit command.

‘ genus@design:alu_4bit> exit ‘

Page 73 of 129

17.

EEE 4232 VLSI Il Laboratory

Now you will be in the pd_lab directory. Check the files inside the directory using the Is -
Itr command and make sure alu_4bit.sdc and alu_4bit _mapped.v files are present in the
directory which will be used for place and route in the upcoming labs.

[eee_150205105@aust pd_lab]$ /s

-Itr

rw-
w-r--.
rW-r--
rw-r--
w-r--.
w-r--.
W-r--.

total 196

drwxrwxr-x. 8 eee 150205105 eee 156205105
drwxrwxr-x. 2 eee 150205105 eee 150205105
-rw-r--r--. 1 eee 150205105 eee 156205105
-IW-Tw-r-
-IW-rw-r--
drwxr-xr-
-rw.
-rw-
-rw-
-Tw-
-rw-
-Tw-
-Iw-
-Tw-

e T T B B S B Sl {
'
'

-. 1 eee 150205105 eee 150205105
. 1 eee 150205105 eee 150205105
X. 3 eee 150205105 eee 150205105

--. 1 eee_ 150205105 eee 150205105

1 eee 150205105 eee 150205105
. 1 eee 150205105 eee 150205105
. 1 eee 150205105 eee 150205105
1 eee 150205105 eee 156205105
1 eee 150205105 eee 150205165

105 Dec
24 Dec
597 Dec
1528 Dec
192 Dec
22 Dec
8445 Dec
5586 Dec
4420 Dec
4662 Dec
3253 Dec
353 Dec

1 eee 150205105 eee 156205105 133637 Dec

6619 Dec

10 15:09 pdk

10 15:09 input files

10 15:09 cds.lib

10 15:09 synthesis script.tcl
10 15:09 streamQut.tcl

10 16:26 fv

10 16:26 alu_4bit elaborated.v
10 16:26 alu_4bit_generic.v

10 16:26 alu_4bit_post_synthesis.v
10 16:26 alu_4bit mapped.v

10 16:26 alu_4bit.sdc

10 16:28 genus.cmd

10 16:38 genus.log

10 16:38 qalog.txt

Post Lab Task

1.

ok wnN

Is the testbench module synthesizable?
Why the operating condition of synthesis is slow?

What is Standard Design Constraints (SDC)?

What do LEF and LIB files contain?
List the functions of buffer cells in synthesis.
Check the function of commands report_power, report_gates, report_timing in Genus.

Page 74 of 129

EEE 4232 VLS| Il Laboratory

Lab-6: Physical Design Using Innovus

Implementation System (Part 1)
Objective
The main objectives of this lab are:

e Familiarization with Physical Design flow.
e Familiarization with MMMC(Multi-Mode Multi-Corner).
e Familiarization with chip Floorplan.

Introduction

Back-end Design or Physical Design involves the placement of standard cell, macro, and making
physical connections between pins using metal layers(routing) to meet the design power,
performance, and area (PPA) goals. Physical Design flow uses the technical libraries that are
provided by the fabrication houses. These technology files provide information regarding the
type of Silicon wafer used, the standard cells used, and the layout rules. Physical design is
followed by verification after all verifications post-processing is applied where the data is
translated into an industry-standard format called GDSII.

System Design Import & Timing mode setup
Specification
\ 4
v Architectural :
ENTITY test Design Floorplanning
port a: in;

end ENTITY Functional Design

Y and LOglC Design Creating Power Mesh
@)} Circuit Design
4 v Cell Placement and PreCTS Optimization
= Physical Design
L] - + 1
¥ Physical Verification Clock Tree Synthesis and PostCTS opt.
DRC and Signoff
VS *
ERC
¥ Fabrication Routing and post routing opt.
{) Vo
t] Packaging
T and Tfsting Metal and standard cell fill

4? Chip
Physical Verification

ASIC design flow showing the physical design tasks

Page 75 of 129

EEE 4232 VLS| Il Laboratory

Physical Design is the process of transforming a circuit description into a physical layout that
describes the position of cells and routes for the interconnections between them. In this stage,
standard cells are placed on a defined floorplan, and route the wire to connect the standard cells.
That is why we call this automatic Place and Route (PnR). Goals for each stage of PnR are given

Floorplan
I. Define the width and height of the core and die. (core defines the area where core
Logic cells are placed).
II. Define locations of preplaced cells (blocks or macros, placed based on
connectivity)
M. Surround pre-placed cells with Decoupling capacitors.

Power Plan
l. Power grid network is created to distribute power to each part of the design equally.
II. To connect the power network to every instance by considering IR drops and EM
(Electromigration)
Ill. Reduce dynamic and static power dissipation.

Placement
I. Minimizes congestion and makes the design routable
II. Timing, power, and area optimization
Ill. Reduces cell density, pin density, and congestion hot-spots
IV. Minimal DRV violations

Clock Tree Synthesis (CTS)
I. Meeting the constraints written in the SDC file
II. Meeting clock tree targets (Min skew and insertion delay (latency))
[Il. Controls buffer/inverter level used in the clock network

Routing
I. Minimizes total interconnect/wire length
II. Minimizes critical path delay
lll. Completes the connection without increasing total area and minimizes the
number of layer changes
IV. Reduces cross-talk noise
V. Meeting Setup and hold timing margin

Page 76 of 129

EEE 4232 VLS| Il Laboratory

Input and Output files of Physical Design

lib LEF Cap Table
Gate Level
sDC l Netlist
Floorplanning
DEF

Input Files

Technology-Related Files

i) Library Exchange Format file (.lef): Contains technology information and an
abstract view of standard cells
ii) Liberty Timing file (.lib): ASCII representation of timing, power parameter, and

functionality information associated with cells of a particular technology node

Design Related Files

i) Post Synthesized or Gate Level Netlist (.v)
ii) Standard Design Constraints containing all timing and design limitations (.sdc)

Output Files
i) Post APR Netlist (APR refers to Automatic Place and Route)
i) DEF (Design Exchange Format)

In this lab, our main task is to understand and initialize the MMMC (multi-mode multi-corner)
and design an efficient floorplan for our synthesized RTL of lab-6. We will perform the rest of the
steps and physical verification in the next lab.

Page 77 of 129

EEE 4232 VLS| Il Laboratory

Lab Task

Launching Innovus Tool

1. Firstloginto the VLSl lab server with the appropriate cadence license and launch Gnome-

Terminal. [Xlaunch = putty - login = csh-> source ~/cshrc.txt-> gnome-terminal&]

2. Then use the following command in gnome-terminal to go to the home directory.

‘ [eee_150205105@aust ~]$ cd ~ ‘

3. Then go to the pd_lab directory by executing the following command.

‘ [eee_150205105@aust ~]$ cd pd_lab/ ‘

4. Make sure the following directories and files are present in the pd_lab directory using the
following command.

[eee_150205105@aust pd_lab]$ Is -Itr

total 196

drwxrwxr-x. 8 eee_150205105 eee_150205105 105 Dec 10 15:09 pdk

drwxrwxr-x. 2 eee_150205105 eee_ 150205105 24 Dec 10 15:09 input_files
-rw-r--r--. 1 eee_150205105 eee_150205105 597 Dec 10 15:09 cds.lib

-rw-rw-r--. 1 eee_ 150205105 eee 150205105 1528 Dec 10 15:09 synthesis_script.tcl
-rw-rw-r--. 1 eee_150205105 eee_1560205105 192 Dec 10 15:09 streamQut.tcl
drwxr-xr-x. 3 eee_150205105 eee_ 150205105 22 Dec 10 16:26 fv

-rw-rw-r--. 1 eee_ 150205105 eee_150205105 8445 Dec 10 16:26 alu_4bit_elaborated.v
-rw-rw-r--. 1 eee 150205105 eee 150205105 5586 Dec 10 16:26 alu_4bit_generic.v
-rw-rw-r--. 1 eee_150205105 eee_150205105 4420 Dec 10 16:26 alu_4bit_post_synthesis.v
-rw-rw-r--. 1 eee 150205105 eee_150205105 4662 Dec 10 16:26 alu_4bit_mapped.v
-rw-rw-r--. 1 eee_150205105 eee_150205105 3253 Dec 10 16:26 alu_4bit.sdc
-rw-rw-r--. 1 eee_150205105 eee_ 150205105 353 Dec 10 16:28 genus.cmd

-rw-rw-r--. 1 eee_ 150205105 eee_ 150205105 133037 Dec 10 16:38 genus.log

-rw-rw-r--. 1 eee_150205105 ese_150205105 6619 Dec 10 16:38 qalog.txt

5. Now from the pd_lab directory, launch the Innovus tool using the command innovus.

‘ [eee_150205105@aust pd_lab]$ innovus

6. If the linnovus tool is successfully launched, the following text will be shown in the
terminal and the black GUI window of the Innovus will appear on your screen.

Cadence Innovus(TM) Implementation System.
Copyright 2021 Cadence Design Systems, Inc. All rights reserved worldwide.

Version: v21.18-s099_1, built Tue Jul 18 13:03:50 PDT 2023

Options:

Date: Sun Dec 10 16:50:47 2023

Host: aust (x86_64 w/Linux 3.10.0-1160.e17.x86_64) (4cores*4cpus*Intel(R) Xeon(R) CPU E5-2407

v2 @ 2.40GHz 10240KB)
0S: Red Hat Enterprise Linux Server 7.9 (Maipo)

License:

[16:50:47.407993] Configured Lic search path (21.01-s5002): 5280@aust

checkout succeeded
Use setMultiCpuUsage to set your require

invs Innovus Implementation System 21.1

8 CPU jobs allowed with the current license(s).
d CPU count.
Create and set the environment variable TMPDIR to /tmp/innovus_temp_19993 aust_eee_150205105_DSDjGT.

Change the soft stacksize limit to 0.2%RAM (31 mbytes). Set global soft_stack_size_limit to change the v
alue.
**INFO: MMMC transition support version v31-84

[INFO] Loading Pegasus 22.24 fill procedures
innovus 1>

Page 78 of 129

The following Innovus GUI window will appear.

X Innovus(TM) Implementation System 21.18 - fhome/fall18/eee_150205105/pd_lab -

File View Edit Partition Floorplan Power Place

ECO Clock

Route

Timing

EEE 4232 VLS| Il Laboratory

O

>

cadence

»
Layout | &
» » »
o B & () »
All Colors
o
= Favorite
: Violation ~ v
=l Instance M W
B @ Type o v
Block ~
stdCell LA
Cover ~
Physical o W
[e] ~ v
Area |O L Pl
Black Box B v
ILM Block o W
Inside ILM ~
=1 Function ~ W
B o Status L
F- Module ~
= Cell =) |-
w1 Rlarkaoca - e
& Adaptive

-

Detail

Q ” Click to select single object. Shift+Click to desselect multiple ...

Design Import & Timing mode setup

0.01200, 0.04800

7. Now from the Innovus GUI window, launch the Design Import window by executing File

-» Import Design

X Innovus(TM) Implementation System 21.18 - /home/fall18/eee_150205105/pd_lab

n Floorplan Power Place ECO Clock Route Timing

O

X

cadence

X

Netlist

Restore Design, P34 % , v Q - »
ECO Design i W % 1 R g0 = - ey i B (B

%% Al Colors

& Verilog

Create OA Library.

(I Favorite
Violation

® Recent Actions ’

Area 0
Black Box
ck
Inside ILM
Functior
B o Status
+# Module
& Cell
+ Blockage
& Row
+ Floorplan
B Partition

& Adaptive

Exit

— Detail

0.00500, 0.06500

single object. Shift+Click to d

KKKk KKKKKKKIK:E

KKI

Files:

Top Cell:w Auto Assign & By User.

Technology/Physical Libraries:

® 0A

>

Reference Libraries

Abstract View Names:

Layout View Names

— LEF Files

Floorplan

10 Assignment File

Power

Power Nets:
Ground Nets
CPF File

Analysis Configuration

MMMC View Definition File:

Create Analysis Configuration

Save. Load

Cancel

Help

Page 79 of 129

8.

EEE 4232 VLS| Il Laboratory

In the Design import window, select the Verilog option under the Netlist section and then
click on the three dots (...) button for importing the synthesized netlist file to the
database.

X Design Import - O s

Hetlist:
e Verilog

Files: _I

Top Cell: Auto Assign & By User.

OA
Librar,

Technology/Physical Libraries:
. 04
Reference Libraries:

Abstract View Names:
Layout View Mames:

_ LEF Files _|

Floorplan

10 Assignment File: k I

Power

Power Mets:
Ground Nets:

CPF File: k I
Analysis Configuration

MMMC View Definition File: k I
Create Analysis Configuration .

m Save... Load... Cancel Help
e

Now the Netlist File window will appear, click on the double arrow button (>>).

M Metlist Files ><

Metlist File: I ==

Hetlist Fles:

Close
——

Page 80 of 129

EEE 4232 VLSI Il Laboratory

10. In the newly appeared Netlist Files window, select the synthesized netlist file
alu_4bit_mapped.v from the pd_lab directory. Then click on the Close button.

4)(Netlist Files

X
Netlist File: Netlist Selection:
alu_4bit_mapped.v m\i/
Netlist Files: # /home/fall18/eee_150205105/pd_lab C
alu_4bit_mapped.v = §
B input_files
& pdk

alu_4bit.sdc
1 alu_4bit_elaborated.v
| alu 4bit generi

alu_4bit_mapped.v I

Filters: Netlist Files (*.v*) n

Delete

11. If the netlist importing is successful, you will be in the Design Import window again. Now
to define the Top Cell name select the By User option and provide the cell name alu_4bit
in the blank field as shown in the following figure.

N Design Import

— O >
Hetlist:
& Yerilog
Files: alu_4bit_mapped.v . _I
Top Cell:_ Auto .ﬂ.ssignlg, By User: ‘alu_4bit I
DA
Litrary:|
Cell:|,
Wiew|
Technology fPhysical Librares:
e)
Reference Libraries:]
Abstract View Mames:
Layout View Mames:
_ LEF Files]

Floorplan

1D Assignment File: LI |

Powrer

Fower Mets:
Ground Mets:

CPF File: = |

Analysis Configuration

FARARAC Wiew Definition File: = |

Create Analysis Configuration ...

Save.. Load... cancel Help

Page 81 of 129

EEE 4232 VLS| Il Laboratory

12. For adding lef files to the database, select the LEF Files option under the Technology/Physical
Libraries section of the Design Import window. Click on the three dots (...) button beside
the LEF Files option. Then on the appeared LEF Files window click on the arrow (>>) button.

X Design Import — O *

Hetlist:
& Werilog X LEF Files

Files: alu_dhit_mapped.v 3

Top Cell:o Auto Assign e By User: alu_dhit LEF File: ==
S
w 04 LEF Files:
Librany:|
Call|
Wiew:|

Technology/Physical Libraries:
(aF2)
Reference Libraries: _I
Abstract View Mames:

1 Lavout Siew Mames:
© LEF Files | 1 2 .| -9

Floorplan ‘

‘ 12 Assignment File: I |

Power

FPouser Mets:
Ground Mets:

CPF File: = |
Analysis Configuration
MMMC View Definition File: = | Close
e

[elete
==y

Create Analysis Configuration ...

0K Save.. Load... Carncel Help

13.In the LEF Files window find and select the lef file gsclib045_tech.lef and
gsclib045_macro.lef from the pdk/stdcell directory and then click on the Close button.

X LEF Files X
L LEF Selection:
pdk/stdcell/gsclib045_macro.lef m <<

LEF Files: E//home/fall18/eee_1502051OSIpd_Iab/pdk/stdceII ' L

pdk/stdcell/gsclib045_tech.lef

pdk/stdcell/gsclib045_macro.lef gp
gsclib045.gds

) igsclib045_macro.lef

) gsclib045_tech.lef

Filters: |LEF Files (*.lef) -]

Page 82 of 129

EEE 4232 VLSI Il Laboratory

14. Now, on the Power section of the Design Import window, write Power Nets name as VDD
and Ground Nets name as VSS as shown in the below figure. After that click on the Create
Analysis Configuration option for creating the MMMC file.

Metlist:
& Verilog
Files: alu_4bit_mapped.v o
Top Cell:'w Auto Assign & By User: alu_abit
ey
L)
2 LEF Files pdk/stdcell/gschib045_tech.lef pdkistdcell/gsclib0a5_macro.lef e
Floorplan
| 10 Assignment File: \I.‘; ‘
Power
1 Power Nets: VDD
2 Ground MNets: VSS
CPF File: | =D
Analysis Configuration
MMMC View Definition File: =y
3 Create Analysis Configuration ...
m Save... Load... Cancel Help

15. The following blank MMMC Browser window will appear. We will set MMMC objects and
will create appropriate analysis views for our physical design.

M MMPC Browser

Analysis Wiew List

rARARAC Ohjects

Wizard Help

Aanalysis Views
Setup Analysis Wiews
E-Hold Analysis Wiews

Save&Close...

Load...

L elete

Library Sets

RC Carners

OF Conds

Delay Carners
E- Constraint kModes

Beset Preferences...

This wizard will assist you in
specifying the necessary information
to configure the system for RC
extraction, delay calculation, and
timing analysis.

It you have all the necessary data
availahle, it is recommended that
you caonfigure the system as
completely as possible for all steps
of the implementation flow - through
signoff.

If not, you can akvays update the
configuration, if necessary, as you
proceed thraugh the flowe.

If you are camfortable using the
FMMMC Browser, you can use the
Wizard Off button to remove the
help dialog, and proceed at wour
0Wn pace.

For additional assistance with
design import, press the Mext button

By M ext
Wizard Off Close Help

Page 83 of 129

EEE 4232 VLS| Il Laboratory

Library Sets
We will create two Library Sets using slow and fast timing library files as shown in Table 1.
Table-1
Name Timing library file Directory
max_timing pdk/stdcell/slow_vdd1v2_basicCells.lib
min_timing pdk/stdcell/fast_vdd1v2_basicCells.lib

16. To create a library sets, double click on the Library Sets option of the MMMC Browser to
launch the Add Library Set window.
X MMMC Browser — O b4

Analysis View List MMMC Objects Wizard Help
@- Analysis Views

M- Setup Analysis Views
E- Hold Analysis Views

Delay Corners
- Constraint Modes

This wizard will assist you in
specifying the necessary information
to configure the system for RC

extraction, delay calculation, and
timing analysis.

17. In the Add Library Set window, write max_timing in the name field and click on the Add
button.

i X Add Library Set - O x

l:lame: max_timing I
wning Library Files 51 Library Files

Add... Add...
Jelete [Delet

[ok] Apply Close Help
18. The Timing Library Files window will appear. Click on the double arrow (>>) button and select the
slow_vdd1v2_basicCells.lib from the pdk/stdcell directory. Then click on the Close button.

<X_-' ng Library Files
Timing Library File: Timing Library Selection:
‘pdk!stdcell:’slow dd1v2_basicCells.lib Im -

Timing Library Files: B /home/fall18/eee_150205105/pd_lab/pdk/stdcell ¥

i fast_vdd1v2_basicCells.lib

pdk/stdcell/slow_vdd1v2_basicCells.lib I

STTEaTITOU

Filters: Timing Library Files (*.lib) n

Delete

—

Close
—_—

Page 84 of 129

EEE 4232 VLSI Il Laboratory

19. Now in the Add Library Set window select the OK button. A library set will be created
named max_timing which contains pdk/stdcell/slow_vdd1v2_basicCells.lib

1x Add Library Set — O X

Name: max_timing
Timing Library Files Sl Library Files

pdk!stdcelIlslow_vddwz_bas‘lct:ells|

Add...
Delete Delete
S ey

r

i -

- e s

20. Follow steps 16-19 to create the min_timing library set by selecting the
fast_vddiv2_basicCells.lib.

21. After successfully creating two libraries the MMMC browser will look like the below
figure.

X MMMC Browser - a X
Analysis View List MMMC Objects Wizard Help
& Analysis Views
Setup Analysis Views [T TaX_Tmg This wizard will assist you in o
& Hold Analysis Views & Timing specifying the necessary
i pdk/stdcell/slow_vdd1v2_bf}information to configure the
@5l system for RC extraction, delay
E- min_timing calculation, and timing analysis.
& Timing
. pdk/stdcell/fast_vdd1v2_ballit you have all the necessary data
®s available, it is recommended that
bR Corners you configure the system as
& OP Conds completely as possible for all =
B Delay Corners steps of the implementation flow
Constraint Modes - through signoff.
If not, you can always update the
configuration, if necessary, as
you proceed through the flow.
If you are comfortable using the
MMMC Browser, you can use the
Wizard Off button to remove the

help dialog, and proceed at your

own pace.
|7 ey
[il ‘ Prey .~ Next
Save&Close... Load.. | Delete | Reset | Preferences.. . Wizard Off . Close | Help

Page 85 of 129

RC Corners

EEE 4232 VLS| Il Laboratory

Now, we will create an RC Corner using the Cap Table file as shown in Table 2.

Table-2
Name QRC Technology File
grc pdk/stdcell/gpdk045.tch

22. To create an RC corner, double click on the RC Corners option of the MMMC Browser to
launch the Add RC Corner window.

(}(MMMC Browser

Analysis View List

Wizard Help

- Analysis Views
- Setup Analysis Views
- Hold Analysis Yiews

MRMC Ohjects

- UF 1
- Delay Carners
(- Constraint Modes

Thiz wizard will assist you in
specifying the necessary information
to configure the system for RC
extraction, delay calculation, and
timing analysis.

23. Inthe Add RC Corner window, write grc in the Name field and select the QRC Technology
Files from the location pdk/stdcell/gpdk045.tch. After that click on the OK button.

5 thome/fall18/eee_150205105/pd_lab/pdk/stdcell

Boorc@e

X QRC Technology File
X Add -0 Look in:
1 |Name: gqrc & eee 151
Cap Table \=J
Temperature;
PreRoute Resistance Scale Factor. 10
PreRoute Cap Scale Factor: 10
PreRoute Clock Resistance Scale Factor: 00
PreRoute Clock Cap Scale Factor: 00
PostRoute Resistance Scale Factor: 10
| PostRoute Cap Scale Factor: 10
| PostRoute Xcap Scale Factor: 10
PostRoute Clock Resistance Scale Factor: 00

PostRoute Clock Cap Scale Factor:
4 QRC Technology File

| Apply

Close

|

00
: [

3

Filename: godk045.ch
Help

Files of type: QX Tech Fie (*tch*)

' Cancel
4

Page 86 of 129

EEE 4232 VLSI Il Laboratory

24. After successfully creating the RC Corner the MMMC browser will look like the below
figure.
‘>< MMMC Browser — | X

Analysis View List MMMC Objects Wizard Help

B Analysis Views Library Sets =
B Setup Analysis Views RC Corners This wizard will assist you in
Hold Analysis Views =l grc

specifying the necessary
Cap Table: information to configure the
- T system for RC extraction, delay
PreRoute Res: 1.0 calculation, and timing analysis.
- PreRoute Cap : 1.0
- PreRoute Clkres : 0.0 It you have all the necessary data
- PreRoute Clkcap : 0.0 available, it is recommended that
-~ PostRoute Res: 1.0 you configure the system as
~ PostRoute Cap : 1.0 completely as possible for all s
PostRoute Xcap : 1.0 steps of the implementation flow
- PostRoute Clkres : 0.0 - through signoff.
PostRoute Clkcap : 0.0 If not, you can always update the
~ QX Tech File : pdk/stdcell/gpdkOql configuration, if necessary, as
B OP Conds you proceed through the flow.
B Delay Corners

& Constraint Modes If you are comfortable using the
MMMC Browser, you can use the
Wizard Off button to remove the
help dialog, and proceed at your
own pace.

Il l Prey Next

Save&Close... Load... Delete Reset Preferences... | | Wizard Off Close Help

il

Delay Corners

Now, we will create two different Delay Corners using the max_timing and min_timing library
sets and the grc RC Corner as shown in Table-3.

Table-3
Name Type RC Corner Library Set
max_delay Single Bc/Wc gre max_timing
min_delay Single Bc/Wc gre min_timing

25. To create a delay corner, double click on the Delay Corners option of the MMMC Browser
to launch the Add Delay Corner window.

X MMMC Browser — a x

Analysis View List MMMC Objects Wizard Help
- Analysis Views B Library Sets
B- Setup Analysis Views #- RC Comers
BE- Hold Analysis Views +].-

This wizard will assist you in
specifying the necessary information
to configure the system for RC
extraction, delay calculation, and
timing analysis.

Page 87 of 129

EEE 4232 VLSI Il Laboratory

26. In the Add Delay Corner window, write max_delay in the name field, select the type
Single Bc/Wc, choose grc from the RC Corner option, and max_timing from the Library
Set option. Then, click on the OK button.

X Add Delay Corner —] >
I\Jame: max_delay I
Power Domain List - Type
‘ — On Chip Variation |® Single/BcWc
Attributes
RC Corner: grc
Library Set: max_timing
OpCond Lib:
OpCond: ‘
IrDrop File: B
—
Early
Add... s
—— Li ry se =)
Delete o il
—_—
! pa—
D Fil =
—
Late
Li ry <
)pC i L
=4
E —
C Fil =
—

l OK I Apply Close Help

27. Follow steps 25-26 and create the min_delay delay corner by selecting the min_timing
from Library Set and grc from RC Corner.

28. After successfully creating all two delay corners, the MMMC Browser will look like the
below figure.

<)(MMMC Browser — O X
Analysis View List MMMC Objects Wizard Help
Analysis Views Library Sets &
Setup Analysis Views RC Corners This wizard will assist you in
Hold Analysis Views OP Conds specifying the necessary
Delay Corners information to configure the
= ma’f.ae ay ‘ system for RC extraction, delay
B Library Set : max_timing calculation, and timing analysis.
- Opcond Library :
Opcond : It you have all the necessary data
B RC COF"_GF Lqrc available, it is recommended that
- Irdrop File : - you configure the system as
El- Power Domain List completely as possible for all =
&l min_delay steps of the implementation flow
B Library Set : min_timing - through signoff.
Opcond Library : If not, you can always update the
~ Opcond : configuration, if necessary, as
B RC Corner : grc you proceed through the flow.
- Irdrop File :
& Power Domain List If you are comfortable using the
& Constraint Modes MMMC Browser, you can use the
Wizard Off button to remove the
help dialog, and proceed at your
own pace.
Prey. Next |
N—
Load... Delete Reset Preferences... = Wizard Off = Close Help

Page 88 of 129

EEE 4232 VLS| Il Laboratory

Constraint Mode

In this part, a constraint mode will be created from the post synthesis constraint file(SDC file)
using the Constraint Mode option as shown in Table-4.

Table-4
Name SDC constraint files
fuctional_sdc pd_lab/alu_4bit.sdc

29. Double click on the Constraint Modes option of the MMMC Browser to open Add
Constraint Mode window.

X MMMC Browser — O bd
Analysis Wiew List MMMC Objects Wizard Help
B Analysis Views Library Sets
@- Setup Analysis Views B RC Corners) . . .)
3] HDIdf Analysis Views OP Conds This wizard will assist you in
: 4. Delay Caomars specifying the necessary information
Constraint Modes to configure the system for RC
extraction, delay calculation, and
timing analysis.

30. In the Add Constraint Mode window, write fuctional_sdc on the name field and click on
the Add button.

X Add Constraint Mode — (| >
MName: functional_sdc|
T eDL oSt rnes ILM Constraint Files
Add... Add...
elete Delet
L __OK Apply Close Help
31. Now the SDC Constraints Files window will appear. Click on the double arrow button (>>)
2 SDC Constraint Files =
SDhC Constraint File: Sl

SDC Constraint Files:

Eeleie

Close

Page 89 of 129

EEE 4232 VLSI Il Laboratory

32. Select the alu_4bit.sdc from the pd_lab directory. After that click on the Close button.

X SDC Constraint Files

X
SDC Constraint File: m ~SDC Constraint Selection:
alu_dbit.sdc <<
- —
SDC Constraint Files: S /home/fall18/eee_150205105/pd_lab ' L
I_ alu_4bit.sdc 8 gaLog.txt
 input_files streamOut.tcl
5 pd synthesis_script.tcl

alu_4bit_g v

alu_4bit_mapped.v

alu_4bit_post_synthesis.v

cds.lib

genus.cmd

genus.log

innovus.cmd

innovus.log

innovus.logv

pegasus_ui_gui.log

Filters: SDC Constraint Files (*.sdc*) n
Delete
e e
Close

33. Then click OK on Add Constraint Mode window.

X Add Constraint Mode —] >
Mame: functional_sdc
SDC Constraint Files ILM Constraint Files
' alu_4hit.sdc I
Fate L= Ao,
Eelete Delete
—— — —

34. After successfully creating the constraint mode, a constraint mode named functional_sdc

is created in the MMMC Browser.

X MMMC Browser

Analysis View List

MMMC Objects

Wizard Help

& Analysis Views
Setup Analysis Views
& Hold Analysis Views

& Library Sets
[RC Corners

& OP Conds

& Delay Corners
Constraint Modes
- functional_sdc
& Sdc Files

- - alu_4bit.sdc
& Ilm Sdc Files

This wizard will assist you in
specifying the necessary
information to configure the
system for RC extraction, delay
calculation, and timing analysis.

It you have all the necessary data
\FEYy

Next

N/

Llose Help

Page 90 of 129

EEE 4232 VLS| Il Laboratory

Analysis Views

We will create two different Analysis Views using the previously created max_delay and
min_delay delay corners and constraint mode fuctional_sdc as shown in Table-5.

Table-5
Name Constraint Mode Delay Corner
func_slow fuctional_sdc max_delay
func_fast fuctional_sdc min_delay

35. To create an analysis view double, click on the Analysis Views option of the MMMC
Browser to launch the Add Analysis View window.

X MMMC Browser - O X
analysis Yiew List MMMC Objects Wizard Help

& Analysis Views #- Library Sets

#- o a E EWS -RC Corners

@ Hold Analysis View: This wizard will assist you in

w6 -EEE

s OF Conds o) .
Delay Comers specifying the necessary information
Constraint Modes to configure the system for RC

extraction, delay calculation, and
timing analysis.

36.In the Add Analysis View window write func_slow in the name field, select
functional_sdc from the Constraint Mode option, max_delay from the Delay Corner
option, and after that press Ok.

X Add Analysis View — | X

Name: func_slow
Constraint Mode: functional_sdc [~ |
Delay Comer: max_delay [~ |

@I zepy Close Help

37. Follow steps 35-36 and create the func_fast analysis view by selecting the functional_sdc
from the Constraint Mode option and max_delay from the Delay Corner option.

X Add Analysis View — O X
Mame: func_fast
Constraint Mode: functional_sdc n
Delay Cornet:min_delay n

& ooy Close Help

Page 91 of 129

EEE 4232 VLS| Il Laboratory

Setup and Hold Analysis View
We will specify setup and hold analysis views using the func_slow and func_fast analysis
views created in the previous steps.

38. To specify the setup analysis view, double click on the Setup Analysis View option on the
MMMC Browser to launch the Add Setup Analysis.

X MMMC Browser - O X
Analysis View List MMNMC Objects Wizard Help
i Analucic Viewe M- Library Sets
- Setup Analysis Views B#-RC Comers - . . .
R EETEERIETE @ OP Conds This wizard will assist you in
’ B Delay Corners specifying the necessary information
& Constraint Modes to configure the system for RC
extraction, delay calculation, and
timing analysis.

39. In the Add Setup Analysis View window select the func_slow from the Analysis View
and press Ok.

X Add Setup Analysis .. — O X

Analysis View: func_slow [~]

m Apply Close Help

40. Following steps 38-39 and specify the Hold Analysis View option by selecting the

func_fast Analysis View.
X Add Hold Analysis V.. — O X
I Analysis View: func_fast [~ | I

m Apply Close Help ‘

Page 92 of 129

figure, and then click on the Save&Close button.

X MMMC Browser

Analysis View List

MMMC Objects

EEE 4232 VLSI Il Laboratory

41. After adding all analysis views, make sure your MMMC Browser looks like the below

Wizard Help

& func_slow
& Constraint Mode : functional_sdc
i B Sdc Files
L alu_4bit.sdc
& llm Sdc Files
E Delay Corner : max_delay
Library Set : max_timing
i Opcond Library :
- Opcond :
RC Corner : grc
+ Irdrop File :
Power Domain List
&= func_fast
& Constraint Mode : functional_sdc
H E! Sdc Files
alu_4bit.sdc
- llm Sdc Files
& Delay Corner : min_delay
Library Set : min_timing
i Opcond Library :
- Opcond :
RC Corner : qrc
- Irdrop File :
Power Domain List
& Setup Analysis Views
i @ func_slow

El Library Sets
B max_timing
. B Timing
* pdksstdcell/slow_vdd1v2_basicCells
Sl
= min_timing
B Timing
pdk/stdcell/fast_vdd 1v2_basicCells.|
Sl
E}RC Corners
grc
OP Conds
El Delay Corners
B max_delay
Library Set : max_timing
i~ Opcond Library :
Opcond :
RC Corner : grc
Irdrop File :
Power Domain List
= min_delay
Library Set : min_timing
Opcond Library :
- Opcond :
RC Corner: grc
-~ Irdrop File :
Power Domain List

This wizard will assist you in
specifying the necessary
information to configure the system
for RC extraction, delay calculation,
and timing analysis.

It you have all the necessary data
available, it is recommended that
you configure the system as
completely as possible for all steps
of the implementation flow -
through signoff.

If not, you can always update the
configuration, if necessary, as you
proceed through the flow.

If you are comfortable using the
MMMC Browser, you can use the
Wizard Off button to remove the
help dialog, and proceed at your
own pace.

For additional assistance with
design import, press the Next

- Hold Analysis Views E} Constraint Modes button
func_fast = functional_sdc
& Sdc Files
i alu_4bit.sdc
“~llm Sdc Files
B il ey, Next
Load... Delete Reset. Preferences... Wizard Off Close Help

42. The Save MMMC Browser View Definition File window will appear. To save all the steps

of the MMMC browser provide a file name and click on the Save button.[Here, we used

the name Default.view]

X Save MMMC View Definition File

Look in:

= /home/fall18/eee_150205105/pd_lab

[E comput
= eee_15(

= fv
M input_files
= pdk

L r\IIII -

——
[Flle name: [I

Files of type: MMMC View Definition File (*.view™®)

. Cancel

Page 93 of 129

EEE 4232 VLS| Il Laboratory

43. Now, make sure your final Design Import window looks like the following figure and then
click on the OK button.

X Design Import —] >

Netlist:

® Verilog
Files: alu_4bit_mapped.v

Top Cell: .~ Auto Assign & By User: alu_4bit

Technology/Physical Libraries:

— OA

I! LEF Files pdk/stdcell/gsclib045_tech.lef pdk/stdcell/gsclib045_macro.lef I

Floorplan
10 Assignment File:

Power

Power Nets: VDD
Ground Nets: VSS
CPF File:

Analysis Configuration

I MMMC View Definition File: Default.view I

i Create Analysis Configuration ... :

I OK I Save... Load... Cancel Help

44. An Innovus window will appear on your screen. The window has multiple rows like the
following figure which ensure that the database has been created perfectly and ready for
floorplanning.

X\nnovus([M)Implementation System 21.18 - /home/fall18/eece_150205105/pd_lab - alu_4bit —] >
File View Edit Partition Floorplan Power Place ECO Clock Route Timing » cadence
TLayout | @

’ = S = |~ - X4 ¥ B8 ~-Q QL Q ¢~ » [|EE] » |G »
R -0 < -58 @ % % @ 1 & Ly - -t i O B 6 [6) -

—— All Colors

o MOE
© - = Favorite
Violation ~
'U' 9 =l Instance o
[B = Type v o
Block ~
” StdcCell o
U Cover L
- Physical »
= 10 o~ & 8
- Area |O w
. Black Box W -
- B Function »
e £33 Status w o
& Module »
Snap - = cell =) -
= Blockage -
4= ' Row L TR
:[[; 1 Floorplan =
s 1 [+ Partition w W
3 & Power - -
= Overlay ™
A = Adaptive
Detail
| select » Instance » ~ Append coords 0,0 radius 50 | Goto
Iil I“_'” Click to select single object. Shift+Click to de/select ... 3.40400, 15.89650 I

Page 94 of 129

EEE 4232 VLS| Il Laboratory

45. For floorplanning, execute Floorplan - Specify Floorplan.

I§pecify Floorplan... I

Structured Data Path...

Automatic Floorplan >
Resize Floorplan...

Relative Floorplan >

Row »
Floorplan Toolbox...

Floorplan Mode...

Trace Macro...

Macro Timing Slack Display...

Edit Floorplan L4
Snap Floorplan... (Crrl+N)
Check Floorplan...

Clear Floorplan...

Instance Group >

Generate Floorplan >

46. Now in the Specify Floorplan window, set Core Utilization 0.4 and select the option Core
to 10 Boundary from the Core Margin By section and put 10 to all the four blank spaces
(Core to Left, Core to Top, Core to Right, Core to Bottom). No need to change the rest of
the value.

X Specify Floorplan — O bt

Basic | advanced

Design Dimensions

Specify By: & Size _ DieAQ/Core Coordinates

® Core Size hy: @ Aspect Ratio: i °
Ig Core Utilization: 04 I

. Cell Utilization: 04

_ Dimension: ‘Width: 26.035

Height: 17.1

. Die Size hy: Width: 46,035
Hﬁiﬂh"‘- 27

Caore Margins by e Core to 10 Boundary
. Care to Die Boundary
Core to Left: 10.0 Core to Tap: 100
Core to Right: 10.0 Caore to Bottom: 10
Die Size Calculation Use: _ Max 10 Height & Min [Height

Floorplan Qrigin at: & Lower Left Carner _ Center
nit: ticron

Page 95 of 129

EEE 4232 VLS| Il Laboratory

47. After successfully specifying all the values, the following floorplan will appear on the

Innovus window.

x Innovus(TM) Implementation System 21.18 - /home/fall18/eee_150205105/pd_lab - alu_4bit —

File View Edit Partition Floorplan Power Place ECO Clock Route Timing ;%

O X

cadence

Layout | @
f & JJTJ, =k |Ggd~*# -~ 54 BY j:"-\,‘ Q g @~ »
- W BB e LWL = By

" & . All Colors

?-:5 | =

El Favorite
Violation

= Instance
B & Type
Block
StdCell
Cover
Physical
10
Area O
Black Box
B o Function
_ Status
#Module
Cell
[Blockage
Row
[# Floorplan
Partition
B Power
Overlay

.

® Adaptive

_ Detail

| select 4 Instance * coords 0,0

~ Append

radius 50 | Goto

13.58250, 43.67500

Lolfie]

48. Now save the design as an Innovus database file using the following command in the

Innovus terminal.

‘ innovus 1> saveDesign floorplan.inn

Post Lab Task

OooNOU A~ WN P

What are the functions of the MMMC browser?

What does QRC Technology File contain?

What are the core area and die area?

What is the concept of rows in the floor plan?

What is constraint mode and how does it control the whole ASIC design?
What are the PVT corner and RC corner?

How is utilization calculated?

Why do we check the setup in the slow corner and hold in the fast corner?
Check all the options of Specify Floorplan window.

Page 96 of 129

EEE 4232 VLS| Il Laboratory

Lab-7A: Physical Design Using Innovus

Implementation System (Part 2)
Objective
The main objectives of this lab are:

e Familiarization with power mesh creation.
e Familiarization with standard cell placement techniques.

Lab Task

In the last lab, we prepared the design import settings and created a floorplan for our design. In
this lab, we will perform the rest of the stages of PnR for completing our physical design

1. Firstloginto the VLSl lab server with the appropriate cadence license and launch Gnome-
Terminal. [Xlaunch = putty - login = csh-> source ~/cshrc.txt-> gnome-terminal&]

2. Then use the following command in gnome-terminal to go to the home directory.

| [eee_150205105@aust ~]$ cd ~ |

3. Then go to the pd_lab directory by executing the following command.

‘ [eee_150205105@aust ~]$ cd pd_lab/ ‘

4. Make sure that the floorplan.inn Innovus database is present in the pd_lab directory
using the following command.

‘ [eee_150205105@aust pd_lab]$ /s -/tr ‘

5. Now from the pd_lab directory, launch the Innovus tool using the command innovus.

‘ [eee_150205105@aust pd_lab]$ innovus ‘

6. Now from the Innovus terminal, open floorplan.inn database using the following
command.

innovus 1> source floorplan.inn

Page 97 of 129

EEE 4232 VLS| Il Laboratory

The following floorplan window will appear on your Innovus window.

X Innovus(TM) Implementation System 21.18 - /home/fall18/eee_150205105/pd_lab/floorplan.inn.dat - alu_4bit — O X

File View Edit Partition Floorplan Power Place ECO Clock Route Timing Verify » cadence

Layout | ©
| "= "\f}} [\EQ‘J"":J % E‘ﬂ\"‘-(- 5‘:'? &) S| » i » L‘ »
[MRy ' P \ = N N
(H# -0 ¢ - N R e L Rl Oy (R0

=& . AllColors

-

(<
(0
]

= Favorite
Violation
= Instance
E & Type
i~ Block
StdCell
Cover
Physical
10
Area lO
i Black Box
[Function
_ Status
I Module
+ Cell
- Blockage
+ Row
t+ Floorplan
+- Partition
t+ Power

Adaptive

¢

m(anfep K KKKKKEKEKEKKKEKIK

» K K |

Kk kkKKKKKKEKKKKKK

@ FmeEe -

— Detail

| select ’ Instance » ~ Append coords 0,0 radius 150 Goto

Q ” Click to select single object. Shift+Click to de/select multiple ob... 16.30950, 40.70600

Power Mesh

After restoring floorplan.inn database to the Innovus tool, now the next step is power mesh
creation where we will add Ring, Stripes, and SRoute to the design.

7. Now to add ring to the design, select Add Ring option by executing Power - Power
Planning - Add Ring.

Connect Global Nets...

Multiple Supply Voltage » L Q A @.» @ & . :d ,EA 5 ,
SR TS Add Ring...

Power Analysis

Power Analysis Add Stripe...

Rail Analysis »
= Y Edit Power Via...

Pack ’
ackags Create Power/Ground Pin...

Report »

Page 98 of 129

EEE 4232 VLS| Il Laboratory

8. Inthe appeared Add Ring window, select the Basic tab and click on the folder icon button
beside the Net(s) field.

<)(Add Rings - [X

Basic | Advanced Via Generation @ Mode | Preview

Net(s): -

Ring Type

& Core ring(s) contouring

Around core boundary » | _ Exclude selected objects

— Block ring(s) around
Each block »

— User defined coordinates: | Corering »

Ring Configuration

Layer: Width: Spacing: Offset:
Top: Metall(1)H» 1.8 1.8 1.8
Bottom: Metall(1)H » 1.8 1.8 1.8
Left: Metal2(2)vV » 1.8 1.8 1.8
Right: Metal2(2)V » 1.8 1.8 1.8
_ Offset: Center in channel Update
m Apply Defaults Cancel Help

9. From the appeared Net Selection window, select both VDD and VSS and then click on Add
button. After that click on the OK button.

f}(: Met Selection - O X
Possible Hets Chosen Hets
WOD
YES
—
Deleie
Gancel el

10. After that in the Basic tab of Add Rings window, check that the Around core boundary
(under the Core ring(s) contouring option) is selected. Then under the Ring Configuration
section, put all the values on the blank field as same as the below figure. Make sure that
the Layer on the Top and Bottom must be Metal3 H and the Layer on the Left and Right
must be Metal4 V.

Page 99 of 129

EEE 4232 VLS| Il Laboratory

X Add Rings - O X

Basic | Advanced @ Via Generation @ Mode @ Preview

Net(s): VDD VSS J

Ring Type

& Core ring(s) contouring

Around core boundary » | | _ Exclude selected obfects

~ Block ring(s) around

— User defined coordinates:

Ring Configuration

Layer: Width: Spacing: Offset:
Top: _MetalB(B] Hr 2 3 1
Bottom:| Metal3(3)H » / 2 3 1
Left: Metalyg)v» 2 3 1
Right: | Metal4(4)v » | 2 3 1|
— Offset: Center in channel Update

m ; Apply) _Qefaults_ _gance\ ; ; Help

11. Now click on the OK button of the Add Rings window. You will see the following Innovus
window where the ring encloses the core area.

X Innovus(TM) Implementation System 21.18 - /home/fall18/eee_150205105/pd _lab/floorplan.inn.dat - alu_4bit — O X

File View Edit Partition Floorplan Power Place ECQO Clock Route Timing Verify »Q cadence

Layout | @
=N RCE A |IBd~"#-24 0% |0 -Q Q & Q-» O &+ »

i» L:i"
(f#-0 ¢ - BB el Kly-w-=-& i3 |HREH---
=8 . All Colors

»

(<
_(]yx

=l Favorite
Violation

= Instance

VDD fatfyt = & Type
Block
StdcCell
Cover
Physical
10
Area IO
BlackBox H

[Function

_ Status

t-Module

+ Cell

t+ Blockage

+- Row

t+ Floorplan

+- Partition

- Power

KrEKKEKKKKEKKKKKEK|K

CO S CH CH CH O LY

® e E-E-E-w
[K K|

Adaptive

— Detail

| select » Instance » ~ Append coords 0,0 radius 150 Goto

Lol

Click to select single object. Shift+Click to de/select multipl. 36.58450, 37.74150 ‘

Page 100 of 129

EEE 4232 VLSI Il Laboratory

12. To add stripes to the design, select Add Stripes option by executing Power -> Power

Planning -> Add Stripe.

Connect Global Nets...
Multiple Supply Voltage

Power Planning Add Ring

ot B IE & O

i 3
Power Analysis Add Stripe...
il Al i >
Rail Analysis Edit Power Via...
Package >
e Create Power/Ground Pin...
Report [

13. In the appeared Add Stripes window, select the Basic tab and click on the folder icon
button for selecting power nets that will be used as stripes in the design.

x Add Stripes — [} >
Advanced @ Via Generation . Mode @ Preview
Set Configuration
Net(s): i = |
Layer: _ Metal1(1) » Directions: _ Vertical ® Horizontal
Wwidth: 1.8 Spacing: 1.8 Update
Set Pattern
& Set-to-set distance: 100 — Number of sets: 1 — Bumps Over. »
v Over P/G pins Pin layer: \(joppinlayenb Pin Width
Master name Selected blocks ® All blocks
« Over Physical Pins Pin layer: ((Joppinlayen b Pin Width
Stripe Boundary
& Corering — Padring: | Outer b « All domains
« Design boundary # Create pins « Each selected block/domain/fence
— Specify rectangular area
X1 Y1: 2 Y2 12
— Specify rectilinear area
-
First/Last Stripe
Start from: & Left Right Top ' Bottom
2 Relative from core or selected area Start: Stop:
« Absolute Start: 58 stop: e
m Apply Defaults Cancel Help

14. From the appeared Net Selection window, select
button. After that click on the OK button.

K Met Selection

Possible Mets

both VDD and VSS and then click on Add

Cancel |

—_ O >
Chosen Mets
WD
WSS

. Help

Page 101 of 129

EEE 4232 VLS| Il Laboratory

15. After that in the Basic tab of Add Stripes window, select the Metal2 layer and Vertical
direction options. Provide Metal2 stirpes with a Width of 2um and Spacing between
stripes will be Zum. Now under the Set Pattern subsection select the Number of sets
option and put the value 1 on the blank field. In First/Last Stripe subsection select Left
and Relative from core or selected area options and put the value of Start 10 and Stop 0.

X

Basic Advanced | Via Generation Mode Preview

Set Configuration

Net(s): VDD VSS |

Layer: | Metal2(2) » Directions: & Vertical . Horizontal

Width: 2 Spacing: 1 Update

Set Pattern

— Set-to-set distance:

Number of sets: 1 — Bumps

— Over P/G pins

— Over Physical Pins
Stripe Boundary

® Corering '« Padring: — All domains
— Design boundary — Each selected block/domain/fence
— Specify rectangular area

— Specify rectilinear area

First/Last Stripe

Start from: & Left — Right — Top — Bottom

® Relative from core or selected area Start: 10 Stop: D|

— Absolute

m _Apply Defaults. _Cancel __Help

16. Now click on the OK button of the Add Stripes window. You will see the stripes as well as
the ring on the design like the following figure.

Page 102 of 129

EEE 4232 VLSI Il Laboratory

Power Planning: SRoute

17. Now to deliver the power supply to the core circuit we need to perform SRoute (special
route). Select the Special Route option by executing Route -» Special Route.

GG Timing Verify Pegasus Tools Windows Flows Help

Generate Routing Guide
Erivolopaifonte - T D) gL B EED s O O WM & YWIE D @

Special Route... 5

NanoRoute >

Metal Fill >
Via Fill 4

18. In the appeared SRoute windows, select the Basic tab and click on the three dots (...)
button for selecting the power nets name that you created on Import Design browser.

<)(SRoute — O X

Advanced Via Generation

Net(s):

SRoute

~ Block Pins & Pad Rings & Floating Stripes
& Pad Pins ¥ Follow Pins Secondary Power F
Routing Control
Layer Change Control
Top Layer: Metal11(11) » Bottomn Layer: Metal1(1) »
o Allow Jogging # Allow Layer Change

_ Specify Area

Connect to Target Inside The Area On
Power Domain Selection
& All « Selected
— Named:
— Delete Existing Routes
Mode Setup Target Editing Options
m Apply Defaults Cancel Help

19. From the appeared Net Selection window, select both VDD and VSS and then click on Add
button. After that press the OK button.

D Met Selection — (=] >
Possible Heis Chosen Mets
WO
WSS

[ox ° Cancel Help

Page 103 of 129

EEE 4232 VLS| Il Laboratory

20. Now under the Basic tab of the SRoute window, choose Metal2 in Top Layer and Metall
in Bottom Layer. Make sure that Allow Jogging and Allow Layer Change options remain

unchecked.
X SRoute — | >

Basic |lAdvanced Via Generation

Net{s): VDD VSS . I
TRoute

& Block Pins & Pad Rings & Floating Stripes
&~ Pad Pins & Follow Pins Secondary Power |
Routing Control

Layer Change Control

Top Layer: | Metal2(2) » Bottom Layer: Metal1(1) »

— Allow Layer Change

— Specify Area

Connect to Target Inside The "ea On
Power Domain Selection
= Al ~ Selected
— Named:
— Delete Existing Routes
Mode Setup Target Editing Options
m Apply Defaults Cancel Help

21. Now under the Via Generation tab of the SRoute window, choose Top Stack Via: Metal2
and Bottom Stack Via: Metal1 options. Make sure that your Via Generation tab will look

like the below figure. Also select Stripe under the Make Via Connection To subsection
<>< SRoute — | >

Basic Advanced Via Generation

Specify Layer Ranges

Crossover Connection:

Top Stack Via Layer: | Metal2(2) » Bottom Stack Via Layer: | Metal1(1) »
Target Connection:
Top Stack Via Layer: | Metal2(2) » Bottom Stack Via Layer: | Metal1(1) »

— Check Standard Cell Geometry

— Split vias longer than 0 into smaller vias

with center-to-center step of 0O and height -1

and bottomv/left edge offsetof -1
Make Via Connections To:

— Pad Ring/Pin | & Stripe — Core Wire __ 10 Wire
— Core Ring — Block Ring _ Block Wire __ Follow Pin _ No Shape
m Apply Defaults Cancel Help

Page 104 of 129

EEE 4232 VLS| Il Laboratory

22. After Completing all the tasks on SRoute window, click on the OK button. The following
figure will appear.

X
X
X
P
X
X
X
X
X
X
P

XAXXXAKXAXAXXAKXXKX

23. This ends our power planning stage. Now save the post your post SRoute design using the
following command.

innovus 2> saveDesign power_plan.inn

Pin Placement

24. After power mesh creation, all the pins of the design need to be placed around the die
boundary. For that, select Pin Editor by executing Edit - Pin Editor.

File ylewI: 'Partitlor_‘n Floorplan Power Place ECO Clock Route Timing

Layout @ £
= hifeu) i % |58 ~ &3 & &
Copy =
2. L . -—
SNVE T L 1 B beg v e = -
Attribute Editor (Q)
DB Browser V)
Move/Resize/Reshape (Shift+R)

Edit Pin Group...
Edit Net Group...
Edit Pin Guide..

Bus Guide >

Wire >

Create Non Default Rule...

Page 105 of 129

EEE 4232 VLSI Il Laboratory

25. The steps for assigning pins to the left side are given below,

a)
b)
c)
d)
e)

At first select A[] and B[] pins the from Pin Group.
Next select Spread and Spread type: Along Entire Edge from the Location section.
Then select Side/Edge: Left from Pin Attribute section.

Also select Layer: M3 from Pin Attribute. [select M4 for top and bottom pins]
After that, check the Assign Fixed Status option.

f) Finally press the Apply button.

X Pin Editor — O >
Pin Attribute A
r—
Partition: alu_4bit _ Clone Pin Name{s): A[0] A[1] A[2] A[3] B[O] B[1] B[2] B[3]
Side/Edge: Left
» Show Partition Edge Mumber 3 Layer: Metal1(1) Metal2(2) | Metal3(2) | Metald(4) Mei_
Edge number based on master L= = L S P O S L S e =
T I.::J.-.'-_:.—I-I- ru'..clul—l.l:lul‘.fﬂ I ik i ri=h I 1 uE_.::u_
|-
Depth: 0.25 Width: 0.08
Location
— Update attribute
P
¢ i — Assign location
2 2 Spread
Spread Type Along Entire Edge »
- — Pattern
Pin Group Pattern Mame ElLLL TRACK b
Reverse Alternate
Side/Group/Layer: All 3 feE AR
— Include Rectilinear Edge
Position =
clk (Unassigned) __ Absolute based ~ Offset based
Cpcode [] : ’ T
Y[l Global Coordinates Starting:
Starting ¥: 0.0 v:35 | Ending:
T
Ending X: 0.0 v:55 | 18
—
Start to end Direction, Clockwise »
Spacing:
Unit® Micron Layer Pitch
Snap To
— Manufacturing Grid
[az] cuay
By &4 %j 4 — User Grid
-
+ Group Bus 2 Layer Track

__ Reverse Order i
Sort By:® Mame . Location
Find Pins:

NEy

— Append Pin(s) to Pin Mame List

«a» [oo |

I M Assign Fixed Status I! Batch Mode _ Master Clone Aware
~ Fix Overlapping
_ Honor Partition and/or Pin-Level Constraints

Use: SIGNAL » =
\SlEhAL Y =
Align... Cancel Help

Page 106 of 129

Hl ¢

EEE 4232 VLS| Il Laboratory

26. Now following step 25 add the rest of the pins according to Table-a.

Table-a
Pin Name Side/Edge Spread Type Layer
All Left Along entire edge M3
BIl
clk Top From Center M4
[for single pin]
Y[] Right Along entire edge M3
Opcode Bottom Between Points
Starting X-=>20 M4
Ending X 225

27. After adding all the pins click on the OK button of the Pin Editor window. Now the design
will look like the below figure on your Innovus window.

XXAXXKXXXXXXXX

X
X
X
X
X
X
X
X
X
X
X
1%

28. Now save the design using the following command. This is the end of the pre-placement
stage.

innovus 3> saveDesign pin_placement.inn

Page 107 of 129

EEE 4232 VLS| Il Laboratory

Cell Placement
29. To place all the existing instances in the design, use the following command

innovus 3> place_design -noPrePlaceOpt

After placement, click on the black screen of the Innovus window and press the F key on
your keyboard. It will clearly show the design with placed instances and the global routing
between.

hafs 1040

X,
X
X1
X

1% .
:(' %
X
X
x
X
X

30. Now save the design to a different database name where all the instances are placed and
connected with each other by global routing by the following command.

‘ innovus 4> saveDesign placement.inn

Post Lab Task

1. Which metal should we use for power and ground rings, stripes, and sroute. why?
Check the difference between global routing and detail routing.

Check the manual of saveDesign, place_design using the man command.

What is No-Load violation?

Why can't we do hold optimization before building a clock tree?

AW

Page 108 of 129

EEE 4232 VLS| Il Laboratory

Lab-7B: Static Timing Analysis Using Innovus

Implementation System
Objective
The main objectives of this lab are:

e Familiarization with Static Timing Analysis.
e Familiarization with clock tree synthesis, and detail routing.
e Familiarization with STA Optimization Techniques. (Pre-CTS and Post-Route)

Introduction

Static Timing Analysis (STA) is a method of validating the timing performance of an ASIC design
by checking all possible paths for timing violations. STA breaks the design down into timing paths,
calculates the signal propagation delay along each path, and checks for violations of timing
constraints inside the design and at the input/output interface.

Timing paths

Path 1 Path 2 Path 3
—"— --------- ~~~\ *'_ ------- ‘~~’A -~ o "~ b g
Logic —D .- Q}— Logic —D .-Q}—: Logic
----------- T o "_.------------0
. ry I—>' "
CLK : :
— Logic ne

Path
In the example, each logic cloud represents a combinational logic network.

Each path starts at a data launch point, passes through some combinational
logic, and ends at a data capture point.

Startpoint

Endpoint

Path 1 Input port Data input of a sequential element
Path 2 Clock pin of a sequential element Data input of a sequential element
Path 3 Clock pin of a sequential element Output port
Path 4 Input port Qutput port

When performing timing analysis, STA first breaks down the design into timing paths. Each timing
path consists of the following elements:

Page 109 of 129

EEE 4232 VLS| Il Laboratory

= Start point: The start of a timing path where data is launched by a clock edge or where
the data must be available at a specific time. Every start point must be either an input
port or a register clock pin.

= Combinational logic network: Elements that have no memory or internal state.
Combinational logic can contain AND, OR, XOR, and inverter elements, but cannot contain
flip-flops, latches, registers, or RAM.

* Endpoint: The end of a timing path where data is captured by a clock edge or where the
data must be available at a specific time. Every endpoint must be either a register data

input pin or an output port.

While performing STA, there are several types of violations that needs to be analyzed and must
solved while debugging the violation paths. We are checking timing violations like setup and hold
violations, and DRV (Design Rule Violations) like maximum transition, capacitance and fanout

violations.

Setup: A setup constraint specifies how much time is necessary for data to be available at the
input of a sequential device before the clock edge that captures the data in the device.

Hold: A hold constraint specifies how much time is necessary for data to be stable at the output
of a sequential device after the clock edge that captures the data in the device.

Setup and hold checks

FF1 _ AR, C)-'J-[.d pa!f FF2
e Combinational s
D o Qr logic 2 Q
— s = >
LI e, ‘ ________________ TS o LIS
|

Setup and hold

launch edge
CLKFF1 ----- B DO

Hold check .

o ~. . Setup check

Hold capture
edge

Setup capture
edge

| | |

10 30

For this example, assume that the flip-flops are defined in the logic library to have a minimum
setup time of 1.0 time units and a minimum hold time of 0.0 time units. The clock period is
defined in the tool to be 10 time units.

Page 110 of 129

EEE 4232 VLS| Il Laboratory

By default, the tool assumes that signals are propagated through each data path in one clock
cycle. Therefore, when the tool performs a setup check, it verifies that the data launched from
FF1 reaches FF2 within one clock cycle, and arrives at least 1.0 time unit before the data gets
captured by the next clock edge at FF2. If the data path delay is too long, it is reported as a timing
violation. For this setup check, the tool considers the longest possible delay along the data path
and the shortest possible delay along the clock path between FF1 and FF2.

When the tool performs a hold check, it verifies that the data launched from FF1 reaches FF2
no sooner than the capture clock edge for the previous clock cycle. This check ensures that the
data already existing at the input of FF2 remains stable long enough after the clock edge that
captures data for the previous cycle. For this hold check, the tool considers the shortest possible
delay along the data path and the longest possible delay along the clock path between FF1 and
FF2. A hold violation can occur if the clock path has a long delay.

Max Transition: Transition delay or slew is defined as the time taken by signal to rise from logic
low state to logic high state or fall from logic high state to logic low state. This check ensures that
logic state is changing within a specific time, not taking longer time than that specific time.

Max Capacitance: The capacitance on a node is a combination of the fan-out of the output pin
and capacitance of the net. This check ensures that the device does not drive more capacitance
than the device is characterized for.

Max Fanout: Fanout is the number of CMOS logic inputs that can be driven by one CMOS logic
output. It refers that how many inputs can be safely driven by a single output pin.

Lab Task

So far, we haven’t done any sort of timing analysis or optimization. In this part, we will try to
understand the pre-CTS timing reports and will try to optimize the violations that occurred during
the pre-CTS stage. Then we will create CTS and will route the design. After that, we will analyze
the post rout or post-CTS timing reports and will try to optimize the violations that occurred
during the post-CTS stage.

1. Now from the Innovus terminal, restore the placement.inn database using the following
command.

innovus 1> source placement.inn

Page 111 of 129

Pre-CTS Timing Optimization

EEE 4232 VLSI Il Laboratory

2. To check the summary of existing setup and DRV violations in the placement stage (also
known as the pre-CTS stage), use the following command

‘ innovus 2> timeDesign -preCTS

A summary of timing violations will appear on the Innovus terminal like the below figure.

timeDesign Summary

Setup views included:

func_slow
e e e e +---————-- +----————- +

| Setup mode | all | reg2reg | default |
e e e e e +

| WNS (ns):| 8.584 | N/A | 8.584 |

| TNS (ns):| ©.000 | N/A | ©.000 |

| Violating Paths:| 0 | N/A | 0 |

| A1l Paths:| 8 | N/A | 8 |
e e e e +
e e e e e e +
| | Real | Total |
| DRVs e s Fom s S s |
| | Nr nets(terms) | Worst Vio | Nr nets(terms) |
e e e e +
max_cap	8 (8)	-0.202	8 (8)
max_tran	8 (8)	0.150	9 (14)
max_fanout	0 (09)	(¢}	0 (09)
max_length	0 (0)	(]	0 (0)
e R e e L Fo-mmmm—— - e e +
Density: 39.924%
Routing Overflow: 0.00% H and 0.00% V

3. After checking summary reports from the Innovus terminal, we need to check the
detailed reports of existing violations. A directory named timingReports will be created
and detailed violation reports will be generated inside that directory every time when we
use timeDesign command on the Innovus. Check your pd_lab directory whether
timingReports directory and violations reports are created or not like the below table.

-r--.

B B B B B
" " " " l " "
" '

. 1 eee_ 150205105 eee 150205105
-. 1 eee_ 150205105 eee_ 150205105
-. 1 eee_ 150205105 eee_ 150205105
. 1 eee 150205105 eee 150205105
-. 1 eee_ 150205105 eee_ 150205105

[eee_156205105@aust pd lab]$ 1s -1tr timingReports/
total 32
-

-
-
-Iv-
-
-
-Iv-
-

266 Dec 17 12:26 alu 4bit preCTS.
558 Dec 17 12:26 alu 4bit preCTS.
392 Dec 17 12:26 alu 4bit preCTS.
178 Dec 17 12:26 alu_4bit preCTS.
482 Dec 17 12:26 alu_4bit preCTS.

1 eee_ 150205105 eee_ 150205105 3149 Dec 17 12:26 alu_4bit preCTS all.tarpt.gz
-. 1 eee_ 150205105 eee_ 150205105 244 Dec 17 12:26 alu_4bit preCTS reg2reg.tarpt.gz
-. 1 eee_ 150205105 eee_ 150205105 3131 Dec 17 12:26 alu_4bit preCTS default.tarpt.gz

fanout.gz
tran.gz
cap.gz
length.gz
summary.gz

Page 112 of 129

EEE 4232 VLS| Il Laboratory

4. In the timeDesign Summary report of step 2 if there is any negative value, it indicates
that there is a violation in the design which must be optimized. To solve the violations on
the design, we have to use the following command for optimization.

innovus 3> optDesign -preCTS

Another optimized summary report will be generated on the innovus terminal where we
can check how many violations still remain after optimization.

Setup views included:

func_slow

e +--------- +--------- +---- - - - - +

| Setup mode | all | reg2reg | default |

e +--------- +--------- +---- - - - - +

| WNS (ns):| 8.815 | NSA | 8.815 |

| TNS (ns):| ©0.000 | NSA | ©0.000 |

| Violating Paths: |] | N/ A | 6] |

| A1l Paths: | 8 | NSA | 8 |

e e e e +

e e e e e e +
| Real | Total |

| DRVs - +omm - - |

| | MNr nets{terms) | Worst Vio | Nr nets(terms) |

e e e it e +

| max_cap | 0 (0) | 0.000 | 0 (0) |

| max_tran | 0 (0) | 0.000 | 1 (6) |

| max_Tanout | 0 (0) | 9] | 0 (0) |

| max_length | 0 (0) | 9] | 0 (0) |

e e e it e +

Density: 39.318%

Routing Overflow: ©.00% H and 0.00% V

5. As we run the pre-CTS optimized command on Innovus, many changes happened to the
design like changes in the placement of cells and global routing. For that reason, we need
to save the design again using the following command

innovus 4> saveDesign placement_optimized.inn

Clock Tree Synthesis

A clock tree is needed to be built in the design for balancing clock skew and latency after
optimizing the design in the placement stage (pre-CTS stage). It is built using a clock buffer
or inverter cells.

6. Now enter the following command in Innovus terminal to build the clock tree.

innovus 5> ccopt _design -cts

7. To check the clock tree from the Innovus, use the following command

innovus 6> ctd_win

Page 113 of 129

EEE 4232 VLS| Il Laboratory

A Clock Tree Debugger window will appear which shows the clock created by the
command used in step 6.

X Clock Tree Debugger : max_delay — O X
View Visibility Color by Help cadence
Q Q Q - (=fPhd P 4| O & = & (8% S

8. After successfully building the clock tree, save the design to a different database name
using the following command.

innovus 7> saveDesign cts.inn

Detail Routing

9. As a pre-CTS optimization is done in the placement stage and after that in the CTS stage,
we built the clock tree, so need to perform detail routing. To perform detail routing, use
the following command in the Innovus terminal.

innovus 8> routeDesign

10. To check whether the detailed routing has been done or not, you can check the wiring
status of the signal routing by selecting a wire and then pressing Q. If the Wire status is
either Routed or fixed, detail routing is done successfully. If all the routing task has been
performed successfully, your Innovus Attribute Editor window will look like the following
window.

Page 114 of 129

EEE 4232 VLS| Il Laboratory

X
File View Edit Partition Floorplan Power Place ECO Clock Route Timing Verify » A cadence
Layout | @
) G @ el | 3 R "’ . 9 ij Il Eﬂ - k.(q ig !\‘ XAttribute Editor — O X
E * -~ 0 J > % % % "b 1 % Iga vy vTET el Object Type: Regular Wire
Net | Name Value Type
g = Net Name Y[3] String
- Wire Direction - ~ Enumerate
§ Bounding Box {33.66 22.285} {43.875 22.365} Box
i width 0.08 Double
. kR R R Length 10.175 Double
- e Routing Layer ota|3(3 Layer
% Rule 7default . Enumerate
Snap iy Mask 0 Integer
'
i
A
m _Apply _AddProp = De), Llose | Help

| select 3 Instance » € ‘ ~ Append coords 0,0 radius 150 Goto
N

EIE| Net: 3] 28.47150, 23.46350

11. After routing save the design using the following command.

‘ innovus 9> saveDesign routeDesign.inn

Post-Route Timing Optimization
12. To check the summary report of existing setup and DRV violations on the routing stage
(post-route stage), use the following commands.

innovus 10> setAnalysisMode -analysisType onChipVariation
innovus 11> timeDesign -postRoute

TimeDesign Summairy

Setup wviews included:
func_slow

+ - ——— - - — - - — - — - — - — — - +—-————— - - - +—-————-—-—- - - +—-———-—-— - - - -+
| Setup mode | all | reg2reg | default |
+ - ——— - - — - - — - — - — - — — - +—-————— - - - +—-————-—-—- - - +—-———-—-— - - - -+
| WHNS (ns): | 8.505 | N A | 8.505 |
| THS (ns): | 0.000 | N A | 0.000 |
| Violating Paths: |] | N A |] |
| ALL Paths: | 2 | ML A | 2 |
+ - - - - - - - - - - - - - - - — - - = = + - - - - - - - - - + - - - - - - - - - + - - - - - — - - - -+
+ - - - - — - - - — - - - — - - = + - - - - - = - - - = = - = - = = = - - = - - = - - - — - = — = + - - - - - - - - — - — — = — — - - - -+
| | Real | Total |
| DRV s e S i o - s ———— - — = s |
| | Mr nets{terms) | Worst VWio | Mr nets{terms) |
+ - - - - — - - - — - - - — - - = + - - - - - - - - - - - - - - - — - = + - - - - - - - — — - — - + - - - - - - - - — - — — = — — - - - -+
| max__cap | Qo (0) | 9.000 | Qo (0) |
| max__tran | a (o) | 0.000 | a (o) |
| max_fTanout | a (o) | 5] | a (o) |
| max_ Length | a (o) | 5] | a (o) |
+——————— - —— - - — - — = +—-——— - - —— - - — - - — - - +—-——————-— - - — = + - —— - —— - —— - — - - — - -+

Density: 392.318%

Page 115 of 129

EEE 4232 VLSI Il Laboratory

13. To check the summary report of hold violation from the post-route stage, use the
following command.

innovus 12> timeDesign -postRoute -hold

Hold views included:
func_fast

e e +--------- +--------- +--------- +
| Hold mode | all | reg2reg | default |
e e e e -+
| WNS (ns):| ®©.800 | N/A | ©.800 |
| TNS (ns):| ©.000 | N/A | ©.o000 |
| Violating Paths:| 0 | N/A | 0 |
| A1l Paths:| 0 | N/A | 0 |
e e e e -+

Density: 39.318%

14. After using the above commands, a summary report will be shown on the Innovus
terminal and detailed reports of violations will be generated inside the timingReports
directory. Check the directory whether detail reports are generated or not like the below
figure.

[eee _150205105@aust pd lab]$ s -1tr timingReports/*postRoute*

-rw-rw-r--. 1 eee 150205105 eee 150205105 3693 Dec 17 13:11 timingReports/alu_4bit postRoute all.tarpt.gz
“ru-ri-re-. 1 eee_150205105 eee_1502051@5 245 Dec 17 13:11 timingReports/alu 4bit postRoute reg2reg.tarpt.gz
-rw-rw-r--. 1 eee 150205105 eee 150205105 3698 Dec 17 13:11 timingReports/alu 4bit postRoute default.tarpt.gz
-rw-rw-r--. 1 eee 150205105 eee 150205105 267 Dec 17 13:11 timingReports/alu_4bit postRoute.fanout.qz
-rw-rw-r--. 1 eee 150205105 eee 150205105 466 Dec 17 13:11 timingReports/alu_4bit postRoute.tran.qz

-rw-rw-r--. 1 eee 150205105 eee 150205105 394 Dec 17 13:11 timingReports/alu_4bit postRoute.cap.gz

-rw-ru-r--. 1 eee 150205105 eee 150205165 179 Dec 17 13:11 timingReports/alu_4bit postRoute.length.qz

-rw-rw-r--. 1 eee 150205105 eee 150205105 452 Dec 17 13:11 timingReports/alu_4bit postRoute.summary.gz
-rW-rw-r--. 1 eee 156205105 eee 150205185 249 Dec 17 13:13 timingReports/alu 4bit postRoute all hold.tarpt.qz
-rW-ru-r--. 1 eee 150205105 eee 150205105 249 Dec 17 13:13 timingReports/alu 4bit postRoute reg2reg hold.tarpt.qz
-rW-ru-r--. 1 eee 150205105 eee 150205105 249 Dec 17 13:13 timingReports/alu 4bit postRoute default hold.tarpt.qz
-rw-rw-r--. 1 eee 150205105 eee 150205105 319 Dec 17 13:13 timingReports/alu 4bit postRoute hold.summary.gz

15. To clean the existing setup and DRV violations at the post route stage, use the following
command.

innovus 13> optDesign -postRoute

Page 116 of 129

EEE 4232 VLS| Il Laboratory

Setup wviews included:
func_slow
e e +-------=-- +-------=-- +- - - - - - +
| Setup mode | all | reg2reg | deTault |
e e +-------=-- +-------=-- +- - - - - - +
| WNS (ns):| 8.585 | N/ A | 8.585 |
| THNS (ns):| 0.000 | N/ A | ©.000 |
| Violating Paths: | e} | N/ A | ¢] |
| A1l Paths: | 8 | N/ A | 8 |
e e +-------=-- +-------=-- +- - - - - - +
+- - - - - — - — - - - - o m e m ettt et m et m s s m s mmmmm———— o — oo e +
| | Real | Total |
| DRVs o s s s s e R |
| | Nr nets(terms) | Worst Vio | Nr nets{terms) |
e e ittt e B i e I +
| max_cap | 0 (@) | 0.000 | 0 (@) |
| max_tran | 0 (@) | 0.000 | 08 (0) |
| max_Tanout | e (@) |) | 2 (9) |
| max_Llength | 0 (@) | 2] | 0 (0) |
e e +- - - - — - — - - +----- - - - - e it +
Density: 39.318%
16. To clean existing hold violations, use the following command.
innovus 14> optDesign -postRoute -hold
Setup views i1ncluded:
func_slow
Hold wiews included:
func_fast
B R e e +
| Setup mode | all | regZreg | default |
B R e e +
| WNS (ns):| 8.5085 | NfA | 8.585 |
| TNS (ns):| o.e00 | NAA | B.esB |
| Violating Paths: | o | N A | o |
| ALl Paths: | a8 | NS A | 8 |
e R Fmmm oo e e +
e R Fmmm oo e e +
| Hold mode | all | reg2reqg | default |
B e it do-mmm - - domm oo oo domm oo oo +
| WHS (ns):| o.ooo | NS | o.e00 |
| THS (ns):| Q.o | N/ A | @ . o000 |
| Violating Paths:| o | N A | e |
| AL Paths: | o] | N By | o] |
e R Fmmm oo e e +
dmm oo B e R e +
| | Real | Total |
| DRV s B i e mm e e - B |
| | Nr nets{terms) | Worst Vio | Nr nets{terms) |
dmm oo i B e +
| max_cap | g (@) | 0.00a | o (0)
| max_tran | o (0} | 0.000 | o (a)
I max_fanout I o (o) | o I o (8)
| max_length | o (0} | 0 | o (a)
e e e e +
Density: 39.318%

17. After optimization, save the design using the following command.

innovus 15> saveDesign routeDesign_optimized.inn

Page 117 of 129

EEE 4232 VLS| Il Laboratory

Post Lab Task

1. Openthe alu_4bit_postRoute.cap.gz report from timingReports directory and find the
reason behind the DRV violation.

What are the goals of CTS?

Why are buffers used in the clock tree?

How many routings are done in PnR?

Compare Setup and Hold time.

Find out the advantage of using inverter over buffer while building a clock tree.

What is clock skew and latency? How does skew affect both setup and hold violations?
Check the manual of report_clocks, selectPin, ccopt_design, routeDesign using the man
command.

© N u bk whN

Page 118 of 129

EEE 4232 VLS| Il Laboratory

Lab-8: Physical Verification and Exporting GDSI|
Using Innovus Implementation System

The main objectives of this lab are:

e Familiarization with filler cells.
e Familiarization with Physical Verification (DRC, Geometry and Connectivity Check)
e Familiarization with GDSII.

Introduction

This section will perform physical verifications to check whether the design layout is equivalent
to its schematic and checks the layout against process manufacturing guidelines provided by the
semiconductor fabrication labs to ensure it can be manufactured correctly. Some common
verification techniques are listed below. This lab will check the DRC, LVS, and ARC under Physical
Verification Steps.

DRC

Physical N LVS
Verification

ARC

Fig: Physical Verification flow

Design Rule Check (DRC)

Design Rules define shapes/size/spacing and many other complex rules of each metal layer. It
starts from the substrate to Newell to the op metal layers. DRC doesn’t ensure that the device
will work properly, it ensures it will get manufactured properly.

Layout versus schematic (LVS)
It checks for correct connectivity between the devices in the circuit. It is a method of verifying
that the layout of the design is functionally equivalent to the schematic of the design.

Page 119 of 129

EEE 4232 VLS| Il Laboratory

ARC (Antenna Rule Check)

Checks for a large area of metals that might affect manufacturing. Ensure that the transistors of
the chip are not destroyed during fabrication. Using metal jogging or inserting a diode at the gate
can fix this.

Lab Task

1.

First log in to the VLSI lab server with the appropriate cadence license and launch Gnome-
Terminal. [Xlaunch = putty - login = csh-> source ~/cshrc.txt-> gnome-terminal&]

Then use the following command in gnome-terminal to go to the home directory.

| [eee_150205105@aust ~]$ cd ~ |

Then go to the pd_lab directory by executing the following command.

‘ [eee_150205105@aust ~]$ cd pd_lab/ ‘

Make sure that the placement.inn database is present in the pd_lab directory. Then
launch the Innovus tool from the pd_lab directory using the command Innovus.

‘ [eee_150205105@aust pd_lab]$ innovus ‘

Now from the innovus terminal, restore the routeDesign_optimized.inn database using
the following command.

‘ innovus 1> source routeDesign_optimized.inn ‘

Filler Cell and Metal Filler

Filler cells are used to fill any spaces between regular library cells. They are needed when the
density of the required metal or layer has not met the foundry or fabrication requirement.

6.

To add filler cells, execute Place = Physical Cell > Add Filler.

Specify >
Place jtag... =R =K << - >
Place Standard Cell... T

2 o — == — =iy S LN

Place Spare Cell...

Refine Placement...

ECO Placement...

Add well Tap...
Add End Cap..-.
Scan Chain > Add Filler...

Physical Cell
Tie HiV/Lo Cell >

I Filler...
Check Placement... Delete <

Display > Add /O Filler...
Query Density Delete 17O Filler...

A\

Check Filler...

Page 120 of 129

EEE 4232 VLS| Il Laboratory

7. Then the Add Filler window will appear. Select all the filler cells from the Cell Lists of the

Select Filler Cells window and give the Prefix FILLER as shown in the following figure. Then
click OK.

X X select Filler Cells X
Cell Name(s) “AP6 DECAP5 DECAP4 DECAP3 DECAP2I Select I Selectable Cells List Cells List
Prefix FILLER 5 1 FILL8 B
— - FILL64
ower Domain Select FLLA
_ DoDRC FILL32
_ FitGap FILL2 3
_ Mark Fixed i:tﬂﬁ =
— FillArea | Dra) ViewhArea, DECAP10 _Delete
S DECAP9
DECAPS
6 DECAP7
DECAP6
m _Apply | Mode.. | Cancel | Help DECAPS
NEF4PA ad

'

After adding filler cells, the design will be like the following figure.

X Innovus(TM) Implementation System 21.18 - /home/fall18/eee_150205105/pd_lab/routeDesign.inn.dat - alu_4bit — | >
File View Edit Partition Floorplan Power Place ECO Clock Route Timing Verify »2 I cadence
Layout &
{1 P 3 = - ((5] =
= & 8 & |9 IRI-"F-24 VY | ~-Q Q & Q- O - -0 ~»|F »
[i e @ (o) " -— L
Ll -0 < - @ % % @ 1 & k- w-=-& 8 B8 & () ==~
= == _ All Colors
Nef - d\’ : ,
‘ \AS
z b | = Favorite
Violation v v
1 1+ RowW -
i + Floorplan LI
] [Partition ¥
Hn 1 IFLLER 71 401 5 177 G Power =) |
¢ 1 HiE] i ¢ [Overlay —
= | [Track -
Net VMV =
. Route v
) Layer n \nd
H: Poly(0) v
- Cont(0) [l v
Metal1(1) Hw v
Snap | Via1(1) Flv »
Metal2(2) 2
42 Via2(2) v
e Metal3(3) v
ik Via3(3) v
/ Metald(4) UL
L —
A & Adaptive
- I Detail
| select » Instance » e ‘ ~ Append coords 0,0 radius 150 Goto
Q I@[Click to select single object. Shift+Click to de/select multip... 42.30000, -0.67850 Se

After adding filler cells, we have to re-route the modified design using the following
command.

innovus 2> ecoRoute

Page 121 of 129

EEE 4232 VLS| Il Laboratory

9. Now to add metal filler use the following command.

innovus 3> addMetalFill

After adding metal filler, the design will be like the following figure.

X Innovus(TM) Implementation System 21.18 - /home/fall18/eee_150205105/pd_lab/routeDesign.inn.dat - alu_4bit — O X
File View Edit Partition Floorplan Power Place ECO Clock Route Timing Verify »Q cadence
Layout | @

|1 - B @ @ 2 JQ’."':’ %ﬁm&jv\% H(\;{ \2,"\') 5 ;;97'| »A\‘EV”A”EF »‘
FH#-c «- B Be 1l Rils-w-=-4 40 ([TIE

%2 _ AllColors

I‘W_e! - .
_ AAS/
Z | = Favorite
4 Violation v v
[+ KOW LI
. Floorplan -V
Partition CCd
[]" Power ()
% Overlay W v
p - Track -
Net =
-~ Route ¥y
Bl Layer T4
H Poly(0) v
> Cont(0) v v
Metal1(1) Sy v
Snap ! Vial(1) v v
Metal2(2) Ov v
42 Via2(2) M
o Metal3(3) vy
YH? Via3(3) vy
e ‘ 2 i : 1 i) Metal4(4) CACA ™
A7 4ia51d i 4t A Ak ® Adaptive
A ™ _ Detail
I select » Instance » te ; ‘ ~ Append coords 0,0 radius 150 Goto |
’E’@’ Click to select single object. Shift+Click to de/select multiple obj... -1.71650, 37.09100 Sel: ({

10. Now, to check the placement density and number of placed cells use the following
command.

innovus 4> checkPlace

Physical Verification

11. After routing, the design must pass all physical verification stages. At first, we will check
all DRC (Design Rule Check) rules using Innovus. Write the following command on the
Innovus terminal.

‘ innovus 5> verify _drc ‘

If the design has a DRC violation, you can see the DRC markers (white cross) from the
Innovus window. To check all the DRC violations, click on the Violation Browser icon
marked on below the figure.

Page 122 of 129

X Innovus(TM) Implementation System 21.18 - /home/fall18/eee_150205105/pd_lab/routeDesign.inn.dat - alu_4bit

File View Edit Partition Floorplan Power

Place ECO Clock Route Timing Verify Pegasus Tools Windows

EEE 4232 VLS| Il Laboratory

= O X

cadence

Layout @
i = Y [RI~-"#- 240 |- Q Q QA - ©
Fl#-0 - BB el Bl -n-=-& i

\ select »

Instance >

~ Append

coords 0,0

_All Colors

(<
{

=l Favorite

Violation
I KOW

Floorplan

Partition

Power

Overlay

Track

Net

Route

= Layer
Poly(0)
Cont(0)
Metal1(1)
Vial(1)
Metal2(2)
Via2(2)
Metal3(3)
Via3(3)
Metal4(4)

[1€ [» [s)i€
<Kk

& Adaptive

e - Detail

radius 150

Q I ‘g‘ l Click to select single object. Shift+Click to de/select multiple objects.

0.52850, 7.61700 ([

12. The following Violation Browser window will appear. In that window, all the DRC type and
their detail violation can be checked. Click on any of the violation it will take you to that

violation area.

X Violation Browser — O X
{ Violation Browser i
= A & Q Bl Rg-"#-240% X O 0 B &
Page:
Violation Type: Violation:
Verify (12/12) LAYER | OBJECT1 ‘ A
= Qeometry(12f12) Metal1(1) NET VDD INST FILLER _
=l Metal_Short (12/12) =
i Metal1(1 NET INST FI
L Metal1(1) (12/12) etall(1) NET VSS ST FILLER |
Metal1(1) NET VDD INST FILLER
Metal1(1) NET VSS INST FILLER
Metal1(1) NET VDD INST FILLER
Metal1(1) NET VSS INST g1023
~))
Description:
Verify: no. = 12, bbox = (10, 10.01) (34, 28.94)
~ Auto Zoom; Level(um) — Active Layers _ Show Selected _ Blink Viol
Find Save Report
Find:
LJ Case Insensitive Drc File: alu_4bit.viols.drc Save | Load_
Report File: alu_4bit.viols.rpt _Save

— Place in Category

Page 123 of 129

13.

EEE 4232 VLS| Il Laboratory

To solve power net (VDD) and ground net (VSS) related violations, use the following
commands on the Innovus terminal.

innovus 6> globalNetConnect VDD -pin VDD -instanceBasename * -verbose
innovus 7> globalNetConnect VSS -pin VSS -instanceBasename * -verbose

14.

15.

16.

17.

18.

19.

20.

21.

22.

Now to solve violations that occurred due to the shape of via, zoom into the violation area
and change the via type by clicking the “Shift+N” key.

Now clear all DRC markers from the Innovus and Violation Browser window and again
check the DRC, using the following commands.

innovus 8> clearDrc
innovus 9> verify_drc

To check all violations related to the connectivity of the design, use the following
command.

‘ innovus 10> verify_connectivity ‘

To check ARC (Antenna Rule Check) using Innovus, write the following command on the
Innovus terminal.

‘ innovus 11> verifyProcessAntenna ‘

To check whether the Power/Ground net is short or not use the following command on
the Innovus terminal. The command checks short between

a. PG and PG nets

b. PG and signal nets

c. PG and other special net

‘ innovus 12> verify PG_short ‘

To check all the single power via are generated correctly to connect each of the PG net
together.

‘ innovus 13> verify _power _via ‘

The following command will check only the generated stacked power via on the design
and reports unconnected or weakly connected special nets.

‘ innovus 14> verify_power_via -stacked_via ‘

To export GDSII from Innovus source the below script.

’ innovus 15> source streamOut.tcl ‘

Now save the final design using the following command on the Innovus terminal.

‘ innovus 16> saveDesign finalDesign.inn ‘

Page 124 of 129

EEE 4232 VLS| Il Laboratory

23. Now close the Innovus using the following command.

innovus 17> exit

24. Make sure you are in the pd_lab directory and open the Virtuoso tool using the
following command.

‘ [eee_150205105@aust pd_lab]$ virtuoso &

The following Virtuoso window will be opened.

[€] Virtuoso? Studio IC23.1 - Log: /home/fall18/eee_150205105/CDS.log — (] X

File Tools Options Help cadence

COPYRIGHT (C) 1992-2023 (CADENCE DESIGN SYSTEMS INC. ALL RIGHTS RESERVED.
(C) 1992-2023 UNIX SYSTEMS Laboratories INC.,
Reproduced with permission.

)|

This Cadence Design Systems program and online documentation are

L

nmouse L: M:

1] > ml

Fi
| D

®

25. Now create a new library by executing File=» New - Library. The Library name should be
identical to the top module name and select the Reference existing technology libraries
under the Technology File section.

Virtuoso? Studio IC23.1 - Log: /home/fall18/eee_150205105/CDS.log — O >
@ools Options Help X New Library — O =
_______________________ DES] Library Technology File
STEMS
Open... Cellview... ced w| [Name alu_4bit
1 rt » \' jes|
Impo Systems progra Directory (non-library directories) & : Reference existing technulog;__y libraries ;
Export L4 . « Attach to an existing technology library
Refresh cts.inn.dat =
EIresi.. finalDesign.inn.dat = Do not need process information
Make Read Only... floorplan.inn.dat
- v . Design Manager
Bookmarks » | | |input_files
pdk — No design manager setup found
Sove Data... ‘home/fall18/eee_150205105/pd_lab
Close Data... — Compression enabled
Exit...

Ia Cancel Defaults Apply Help

el

26. The Reference Existing Technology Libraries window will pop up. From its Technology
Libraries section select the gsclib045_tech to the Reference Technology Libraries and
click on the OK button.

X Reference Existing Technology Libraries — | x
MNew Library alu_4bit
Types an1
Technology Libraries Reference Technology Libraries
analoglLib -
basic -..> Up
Epdk045
sheets < Down

gsclib045_tech

3

Page 125 of 129

EEE 4232 VLSI Il Laboratory

27. Now to import the GDSII file in virtuoso execute File=» Import - Stream

E Virtuoso? Studio 1C23.1 - Log: /fhome/fall18/eee_150205105/CDS.log —

] >
glools Options _Help cadence
New » [2023 CADENCE DESIGN SYSTEMS INC. ALL RIGHTS RESERVED.
2023 UNIX SYSTEMS Laboratories INC., =
Open... Reproduced with permission.
”””””””””
_ EDIF200... and online documentation are w
Export > —
Verilog... [
Refresh... .
VHDL... 111
Make Read Only... - -
- ¥ Spice... A i3
Bookmarks » DEF... EJ
Save Data... LEF...
Close Data... SN
OASIS...
Exit...
Netlist View...
From Allegro ...

28. After that the following XStream In window will appear. Then select the alu_4bit.gds.gz
file as Stream File, select the alu_4bit as Library and write alu_4bit as Top Cell name and

click on the Translate button.

X xStream In — |:| =
Stream File /home/fall18/eee_1502051 Osl:dilabfalujbit,gds.gz I -
Library alu_4bit '
Top Cell alu_4bit
View layout

Template File

— Import to Virtual Memory

» Technology

» Generate Technology Information

» Layer Map me/fall18/eee_150205105/pd_lab/pdk/gpdk045/gpdk04S.layermap | [
(=NIPg

F:

» Object Map

» LogFile strmin.log

Coloring Mode » Enable

Ne—

29. After that the following Stream in translation complete window will pop up. If there is
no error click on the No button.

Cancel Reset All Fields

More Options Help

<X Stream in translation complete X

3\ INFO (XSTRM-234): Translation completed. "0' error{s) and
(@A

you wish to view the log file 7

found. Do

Page 126 of 129

EEE 4232 VLSI Il Laboratory

30. To open the GDSII file first execute Tools-> Library Manager...

Library Manager... ction: XCB error: 1 (BadRequest)

Library Path Editor...

SystemVerilog »

ction: Failed to initialize GLX

NC-Verilog...
} & VHDL Toolbox...

Mol ADE Assembler

ﬂ; ADE Explorer

31. Now the following Library Manager: Directory will appear. From that select the alu_4bit
from the Library then select the alu_4bit from Cell and make sure the in the View layout

is present as shown in the below figure.

L. Library Manager: Directory ..me/fall18/eee_150205105/pd_lab 0 X
File Edit View DesignManager Help cadence
— Show Categories — Show Files
Library Cell View
Y B-7 B-7 8-
T alu_dbit v M aludbit 3 B layout v
B L GSCLIBO4S NAND2X1 View | Lock Size
NOR2BX1
analogLib 1 NORZXL
- ekl basic 0A21X1
|l cdsDefTechLib OAI2BB1X1
- ol gpakD4s OAI21X1
| sheets OAI1XL
OAI221X1
Messages
Log file is "/home/fall18/eee_150205105/pd_lab/libManager.log™. o
A\
Il

[Lib: alu_dbit [Free: 489.53G |

Page 127 of 129

EEE 4232 VLS| Il Laboratory

32. Now double click on the layout from View. Then the following GDSII file will be opened

in the Virtuoso. Initially the abstract view will appear. Press Shift+F to view the complete
layout view.

&4 virtuoso? Studio Layout Suite XL Editing: alu_4bit alu_4bit layout — O X

Launch File Edit View Create Verify Connectivity Options JTools Window Floorplan Place Route Concurrent (éden(e

[—_ 'y 1 ‘%‘" L 3 X [L D) ‘% ‘ @ » :"5 24 ‘u{ » || Classic n». |off ‘
o8 %g *'r. o\ ,;{k\g_)ﬂ Aw O] g/% 13 » ||(Pselect0 SeN)0 Sel(}0 SekO)0 [X 97700 » -
Palette 78 XK 2 : 3 % 3 R j
Layers 5 X

¥ Valid __ Used __ Routing

Fiter) Q B
. Nwell drawing n

AV v NV » AS v NS wig

£ alu_4bit

Name | Vis | Sel |

+ [- Jl+]l -

Layer |Pu. V| S|
Nwell drw ¥ lf‘
Oxide dw ¥
- Oxide_thk drw ¥ W
[rory drw ¥ i
. Pimp dw ¥
. Nhvt dw ¥ ¥
W v dw ¥ ¥ i
Objects g x|
Objects AN
Instances Yy ¥
Pins v v M
Vias M o

Objects | Grids -
| ol B 7 R 1IHEHR > BERNEEF

Moo wuE S E § P 3 -1

Post Lab Task

oW

Discuss the importance of filler cell and metal filler?

How the ARC problem can be solved?

What is IR drop? Define Static and Dynamic power dissipation?

How LVS comparison is done in digital design?

Check the manual of verify_drc, verify_connectivity, verifyProcessAntenna,
verify_PG_short, verify_power_via, using the man command.

Page 128 of 129

EEE 4232 VLS| Il Laboratory

References and Acknowledgment

The following resources have been consulted while preparing the manual.

Stephen Brown and Zvonko Vranesic , “Fundamentals of Digital Logic with Verilog

Design”.

Erik Brunvand , “Digital VLSI Chip Design with Cadence and Synopsys CAD tools”

M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital, Memory,
and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, , ISBN: 0-7923-7991-8.

A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, “VLSI Physical Design: From Graph Partitioning
to Timing Closure. Springer Publishers”, ISBN 978-90-481-9590-9.

https://linuxhint.com/

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1RsOF3NMyxNs-

7y4FacKjfbu5M08XzhOTps eZaTvqueUS4DMNgRzenhw

Prepared by:

Adnan Amin Siddiquee

Lecturer,

Department of EEE,

Ahsanullah University of Science and Technology,
Dhaka, Bangladesh

Partha Sanjoy Dev
Senior Engineer, IC Physical Design,
ULKASEMI Pvt. Limited, Dhaka, Bangladesh

Special Thanks to:

Dr. Satyendra Nath Biswas

Professor,

Department of EEE,

Ahsanullah University of Science and Technology,
Dhaka, Bangladesh

Page 129 of 129

https://linuxhint.com/
https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1Rs0F3NMyxNs-7y4FacKjfbu5M08XzhOTps_eZaTvqueUS4DMNgRzenhw
https://www.synopsys.com/glossary/what-is-static-timing-analysis.html?fbclid=IwAR1Rs0F3NMyxNs-7y4FacKjfbu5M08XzhOTps_eZaTvqueUS4DMNgRzenhw

